[1] Banks, D.J., Barnajian, M., Maldonado-Arocho, F.J., Sanchez, A.M., and Bradley, K.A. (2005). Anthrax toxin receptor 2 mediates Bacillus anthracis killing of macrophages following spore challenge.
Cell Microbiol 7, 1173–1185
10.1111/j.1462-5822.2005.00545.x.
[2] Bazan, J.F., and Koch-Nolte, F. (1997). Sequence and structural links between distant ADP-ribosyltransferase families.
Adv Exp Med Biol 419, 99–107
10.1007/978-1-4419-8632-0_12.
[3] Duesbery, N.S., Webb, C.P., Leppla, S.H., Gordon, V.M., Klimpel, K.R., Copeland, T.D.,
(1998). Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor.
Science 280, 734–737
10.1126/science.280.5364.734.
[4] Friedlander, A.M. (1986). Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process.
J Biol Chem 261, 7123–7126 .
[5] Friedlander, A.M., Bhatnagar, R., Leppla, S.H., Johnson, L., and Singh, Y. (1993). Characterization of macrophage sensitivity and resistance to anthrax lethal toxin.
Infect Immun 61, 245–252 .
[6] Guidi-Rontani, C., Levy, M., Ohayon, H., and Mock, M. (2001). Fate of germinated Bacillus anthracis spores in primary murine macrophages.
Mol Microbiol 42, 931–938
10.1046/j.1365-2958.2001.02695.x.
[7] Kim, S.O., Ha, S.D., Lee, S., Stanton, S., Beutler, B., and Han, J. (2007). Mutagenesis by retroviral insertion in chemical mutagen-generated quasi-haploid mammalian cells.
Biotechniques 42, 493–501
10.2144/000112390.
[8] Kim, S.O., Jing, Q., Hoebe, K., Beutler, B., Duesbery, N.S., and Han, J. (2003). Sensitizing anthrax lethal toxin-resistant macrophages to lethal toxin-induced killing by tumor necrosis factor-alpha.
J Biol Chem 278, 7413–7421
10.1074/jbc.M209279200.
[9] McAllister, R.D., Singh, Y., Du Bois, W.D., Potter, M., Boehm, T., Meeker, N.D., Fillmore, P.D., Anderson, L.M., Poynter, M.E., and Teuscher, C. (2003). Susceptibility to anthrax lethal toxin is controlled by three linked quantitative trait loci.
Am J Pathol 163, 1735–1741
10.1016/S0002-9440(10)63532-8.
[10] Moayeri, M., Haines, D., Young, H.A., and Leppla, S.H. (2003). Bacillus anthracis lethal toxin induces TNF-independent hypoxia-mediated toxicity in mice.
J Clin Invest 112, 670–682 .
[11] Moayeri, M., and Leppla, S.H. (2009). Cellular and systemic effects of anthrax lethal toxin and edema toxin
. Mol Aspects Med 30, 439–455
10.1016/j.mam.2009.07.003.
[12] Moayeri, M., Martinez, N.W., Wiggins, J., Young, H.A., and Leppla, S.H. (2004). Mouse susceptibility to anthrax lethal toxin is influenced by genetic factors in addition to those controlling macrophage sensitivity.
Infect Immun 72, 4439–4447
10.1128/IAI.72.8.4439-4447.2004.
[13] Moayeri, M., Webster, J.I., Wiggins, J.F., Leppla, S.H., and Sternberg, E.M. (2005). Endocrine perturbation increases susceptibility of mice to anthrax lethal toxin.
Infect Immun 73, 4238–4244
10.1128/IAI.73.7.4238-4244.2005.
[14] Morisaki, H., and Morisaki, T. (2008). AMPD genes and urate metabolism.
Nippon Rinsho 66, 771–777 .
[15] Muehlbauer, S.M., Evering, T.H., Bonuccelli, G., Squires, R.C., Ashton, A.W., Porcelli, S.A., Lisanti, M.P., and Brojatsch, J. (2007). Anthrax lethal toxin kills macrophages in a strain-specific manner by apoptosis or caspase-1-mediated necrosis.
Cell Cycle 6, 758–766
10.4161/cc.6.6.3991.
[16] Park, J.M., Greten, F.R., Li, Z.W., and Karin, M. (2002). Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition.
Science 297, 2048–2051
10.1126/science.1073163.
[17] Pellizzari, R., Guidi-Rontani, C., Vitale, G., Mock, M., and Montecucco, C. (1999). Anthrax lethal factor cleaves MKK3 in macrophages and inhibits the LPS/IFNgamma-induced release of NO and TNFalpha.
FEBS Lett 462, 199–204
10.1016/S0014-5793(99)01502-1.
[18] Scobie, H.M., and Young, J.A. (2005). Interactions between anthrax toxin receptors and protective antigen.
Curr Opin Microbiol 8, 106–112
10.1016/j.mib.2004.12.005.
[19] Smith, H. (2000). Discovery of the anthrax toxin: the beginning of in vivo studies on pathogenic bacteria.
Trends Microbiol 8, 199–200
10.1016/S0966-842X(00)01755-8.
[20] Smith, H. (2002). Discovery of the anthrax toxin: the beginning of studies of virulence determinants regulated in vivo.
Int J Med Microbiol 291, 411–417
10.1078/1438-4221-00147.
[21] Smith, H., and Keppie, J. (1954). Observations on experimental anthrax: demonstration of a specific lethal factor produced in vivo by Bacillus anthracis.
Nature 173, 869–870
10.1038/173869a0.
[22] Vitale, G., Bernardi, L., Napolitani, G., Mock, M., and Montecucco, C. (2000). Susceptibility of mitogen-activated protein kinase kinase family members to proteolysis by anthrax lethal factor.
Biochem J 352, 739–745
10.1042/0264-6021:3520739.
[23] Vitale, G., Pellizzari, R., Recchi, C., Napolitani, G., Mock, M., and Montecucco, C. (1998). Anthrax lethal factor cleaves the N-terminus of MAPKKs and induces tyrosine/threonine phosphorylation of MAPKs in cultured macrophages.
Biochem Biophys Res Commun 248, 706–711
10.1006/bbrc.1998.9040.
[24] Wang, X., Ono, K., Kim, S.O., Kravchenko, V., Lin, S.C., and Han, J. (2001). Metaxin is required for tumor necrosis factorinduced cell death.
EMBO Rep 2, 628–633
10.1093/embo-reports/kve135.