Jun 2024, Volume 5 Issue 6
    

  • Select all
  • ORIGINAL ARTICLE
    Qiao-Ru Guo, Guo-Bin Zhang, Wen-Min Zhou, Yu Lu, Xin-Zhu Chen, Zhuo-Fen Deng, Jin-Shuo Li, Hong Bi, Ming-Sheng Wu, Ming-Ran Xie, Yan-Yan Yan, Jian-Ye Zhang
    PDF

    Cancer is a disease with molecular heterogeneity that is closely related to gene mutations and epigenetic changes. The principal histological subtype of lung cancer is non-small cell lung cancer (NSCLC). Long noncoding RNA (lncRNA) is a kind of RNA that is without protein coding function, playing a critical role in the progression of cancer. In this research, the regulatory mechanisms of lncRNA phosphorylase kinase regulatory subunit alpha 1 antisense RNA 1 (PHKA1-AS1) in the progression of NSCLC were explored. The increased level of N6-methyladenosine (m6A) modification in NSCLC caused the high expression of PHKA1-AS1. Subsequently, high-expressed PHKA1-AS1 significantly facilitated the proliferation and metastasis of NSCLC cells, and these effects could be reversed upon the inhibition of PHKA1-AS1 expression, both in vivo and in vitro. Additionally, the target protein of PHKA1-AS1 was actinin alpha 4 (ACTN4), which is known as an oncogene. Herein, PHKA1-AS1 could enhance the protein stability of ACTN4 by inhibiting its ubiquitination degradation process, thus exerting the function of ACTN4 in promoting the progress of NSCLC. In conclusion, this research provided a theoretical basis for further exploring the potential mechanism of NSCLC metastasis and searching novel biomarkers related to the pathogenesis and progression of NSCLC.

  • REVIEW
    Sha Qin, Bin Xie, Qingyi Wang, Rui Yang, Jingyue Sun, Chaotao Hu, Shuang Liu, Yongguang Tao, Desheng Xiao
    PDF

    Cancer is one of the leading causes of death worldwide, and more effective ways of attacking cancer are being sought. Cancer immunotherapy is a new and effective therapeutic method after surgery, radiotherapy, chemotherapy, and targeted therapy. Cancer immunotherapy aims to kill tumor cells by stimulating or rebuilding the body's immune system, with specific efficiency and high safety. However, only few tumor patients respond to immunotherapy and due to the complex and variable characters of cancer immune escape, the behavior and regulatory mechanisms of immune cells need to be deeply explored from more dimensions. Epigenetic modifications, metabolic modulation, and cell-to-cell communication are key factors in immune cell adaptation and response to the complex tumor microenvironment. They collectively determine the state and function of immune cells through modulating gene expression, changing in energy and nutrient demands. In addition, immune cells engage in complex communication networks with other immune components, which are mediated by exosomes, cytokines, and chemokines, and are pivotal in shaping the tumor progression and therapeutic response. Understanding the interactions and combined effects of such multidimensions mechanisms in immune cell modulation is important for revealing the mechanisms of immunotherapy failure and developing new therapeutic targets and strategies.

  • REVIEW
    Yiming Xu, Ziyi Bai, Tianxia Lan, Chenying Fu, Ping Cheng
    PDF

    CD44, a nonkinase single span transmembrane glycoprotein, is a major cell surface receptor for many other extracellular matrix components as well as classic markers of cancer stem cells and immune cells. Through alternative splicing of CD44 gene, CD44 is divided into two isoforms, the standard isoform of CD44 (CD44s) and the variant isoform of CD44 (CD44v). Different isoforms of CD44 participate in regulating various signaling pathways, modulating cancer proliferation, invasion, metastasis, and drug resistance, with its aberrant expression and dysregulation contributing to tumor initiation and progression. However, CD44s and CD44v play overlapping or contradictory roles in tumor initiation and progression, which is not fully understood. Herein, we discuss the present understanding of the functional and structural roles of CD44 in the pathogenic mechanism of multiple cancers. The regulation functions of CD44 in cancers-associated signaling pathways is summarized. Moreover, we provide an overview of the anticancer therapeutic strategies that targeting CD44 and preclinical and clinical trials evaluating the pharmacokinetics, efficacy, and drug-related toxicity about CD44-targeted therapies. This review provides up-to-date information about the roles of CD44 in neoplastic diseases, which may open new perspectives in the field of cancer treatment through targeting CD44.

  • ORIGINAL ARTICLE
    Min Hee Yang, Young Yun Jung, Jae-Young Um, Gautam Sethi, Kwang Seok Ahn
    PDF

    Cancer cachexia is a multifactorial condition that contributes to the death of about 20% of cancer patients. It has the potential to cause weight loss, reduction in muscle mass, and loss of fat tissue, significantly lowering the quality of life. Currently, there are no approved drugs for cancer cachexia. Here, we have explored the possible impact of brassinin (BSN) on cancer cachexia under in vitro and in vivo settings. After differentiation, C2C12 and 3T3-L1 cells were incubated with colorectal carcinoma cells conditioned media or BSN. For preclinical studies, mice were injected with HT-29 cells followed by intraperitoneal administration of BSN, and muscle and adipose tissues were evaluated by Western blotting and hematoxylin and eosin staining. BSN effectively suppressed muscle atrophy by down-regulating the levels of Muscle RING-finger protein-1 and Atrogin-1, while also increasing the expression of myosin heavy chain in cachexia-induced-C2C12 myotubes. The induction of adipogenesis by BSN prevented adipocyte atrophy in cachexia-induced 3T3-L1 adipocytes. We also noted that BSN disrupted the interaction between COX-2 and signaling transducer and activator of transcription 3 (STAT3) promoter, leading to down-regulation of STAT3 activation. Moreover, it was found that BSN inhibited weight loss in mice and demonstrated anti-cachexic effects. Overall, our observations indicate that BSN can attenuate cancer cachexia through diverse mechanisms.

  • REVIEW
    Zi-Han Yang, Fang-Zhou Chen, Yi-Xiang Zhang, Min-Yi Ou, Poh-Ching Tan, Xue-Wen Xu, Qing-Feng Li, Shuang-Bai Zhou
    PDF

    White adipose tissue is not only a highly heterogeneous organ containing various cells, such as adipocytes, adipose stem and progenitor cells, and immune cells, but also an endocrine organ that is highly important for regulating metabolic and immune homeostasis. In individuals with obesity, dynamic cellular changes in adipose tissue result in phenotypic switching and adipose tissue dysfunction, including pathological expansion, WAT fibrosis, immune cell infiltration, endoplasmic reticulum stress, and ectopic lipid accumulation, ultimately leading to chronic low-grade inflammation and insulin resistance. Recently, many distinct subpopulations of adipose tissue have been identified, providing new insights into the potential mechanisms of adipose dysfunction in individuals with obesity. Therefore, targeting white adipose tissue as a therapeutic agent for treating obesity and obesity-related metabolic diseases is of great scientific interest. Here, we provide an overview of white adipose tissue remodeling in individuals with obesity including cellular changes and discuss the underlying regulatory mechanisms of white adipose tissue metabolic dysfunction. Currently, various studies have uncovered promising targets and strategies for obesity treatment. We also outline the potential therapeutic signaling pathways of targeting adipose tissue and summarize existing therapeutic strategies for antiobesity treatment including pharmacological approaches, lifestyle interventions, and novel therapies.

  • REVIEW
    Hao Wang, Yi Zhang, Hao Zhang, Hui Cao, Jinning Mao, Xinxin Chen, Liangchi Wang, Nan Zhang, Peng Luo, Ji Xue, Xiaoya Qi, Xiancheng Dong, Guodong Liu, Quan Cheng
    PDF

    Currently, tumor treatment modalities such as immunotherapy and targeted therapy have more stringent requirements for obtaining tumor growth information and require more accurate and easy-to-operate tumor information detection methods. Compared with traditional tissue biopsy, liquid biopsy is a novel, minimally invasive, real-time detection tool for detecting information directly or indirectly released by tumors in human body fluids, which is more suitable for the requirements of new tumor treatment modalities. Liquid biopsy has not been widely used in clinical practice, and there are fewer reviews of related clinical applications. This review summarizes the clinical applications of liquid biopsy components (e.g., circulating tumor cells, circulating tumor DNA, extracellular vesicles, etc.) in tumorigenesis and progression. This includes the development process and detection techniques of liquid biopsies, early screening of tumors, tumor growth detection, and guiding therapeutic strategies (liquid biopsy-based personalized medicine and prediction of treatment response). Finally, the current challenges and future directions for clinical applications of liquid biopsy are proposed. In sum, this review will inspire more researchers to use liquid biopsy technology to promote the realization of individualized therapy, improve the efficacy of tumor therapy, and provide better therapeutic options for tumor patients.

  • ORIGINAL ARTICLE
    Shengnan Shen, Qiwen Liao, Peng Lyu, Jigang Wang, Ligen Lin
    PDF

    Aging is a process that represents the accumulation of changes in organism overtime. In biological level, accumulations of molecular and cellular damage in aging lead to an increasing risk of diseases like sarcopenia. Sarcopenia reduces mobility, leads to fall-related injuries, and diminishes life quality. Thus, it is meaningful to find out novel therapeutic strategies for sarcopenia intervention that may help the elderly maintain their functional ability. Oxidative damage-induced dysfunctional mitochondria are considered as a culprit of muscle wasting during aging. Herein, we aimed to demonstrate whether myricanol (MY) protects aged mice against muscle wasting through alleviating oxidative damage in mitochondria and identify the direct protein target and its underlying mechanism. We discovered that MY protects aged mice against the loss of muscle mass and strength through scavenging reactive oxygen species accumulation to rebuild the redox homeostasis. Taking advantage of biophysical assays, peroxiredoxin 5 was discovered and validated as the direct target of MY. Through activating peroxiredoxin 5, MY reduced reactive oxygen species accumulation and damaged mitochondrial DNA in C2C12 myotubes. Our findings provide an insight for therapy against sarcopenia through alleviating oxidative damage-induced dysfunctional mitochondria by targeting peroxiredoxin 5, which may contribute an insight for healthy aging.

  • HIGHLIGHTS
    Junyu Wang, Shugang Qin, Anren Zhang
    PDF
  • ORIGINAL ARTICLE
    Sen-Miao Li, Dian-Dian Wang, Dan-Hua Liu, Xiao-Yan Meng, Zhizhong Wang, Xitong Guo, Qian Liu, Pei-Pei Liu, Shu-Ang Li, Songwei Wang, Run-Zhou Yang, Yuming Xu, Longde Wang, Jian-Sheng Kang
    PDF

    Parkinson's disease (PD) is a mitochondria-related neurodegenerative disease characterized by locomotor deficits and loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc). Majority of PD research primarily focused on neuronal dysfunction, while the roles of astrocytes and their mitochondria remain largely unexplored. To bridge the gap and investigate the roles of astrocytic mitochondria in PD progression, we constructed a specialized optogenetic tool, mitochondrial-targeted anion channelrhodopsin, to manipulate mitochondrial membrane potential in astrocytes. Utilizing this tool, the depolarization of astrocytic mitochondria within the SNc in vivo led to the accumulation of γ-aminobutyric acid (GABA) and glutamate in SNc, subsequently resulting in excitatory/inhibitory imbalance and locomotor deficits. Consequently, in vivo calcium imaging and interventions of neurotransmitter antagonists demonstrated that GABA accumulation mediated movement deficits of mice. Furthermore, 1 h/day intermittent astrocytic mitochondrial depolarization for 2 weeks triggered spontaneous locomotor dysfunction, α-synuclein aggregation, and the loss of DA neurons, suggesting that astrocytic mitochondrial depolarization was sufficient to induce a PD-like phenotype. In summary, our findings suggest the maintenance of proper astrocytic mitochondrial function and the reinstatement of a balanced neurotransmitter profile may provide a new angle for mitigating neuronal dysfunction during the initial phases of PD.

  • HIGHLIGHT
    Guo Zhao, Yuning Wang, Shuhang Wang, Ning Li
    PDF

    Integration of multi-omics analysis into small-cell lung cancer (SCLC) research. In the research of small-cell lung cancer, the integration of multi-omics analysis has become an important research direction. Multi-omics analysis includes the study of genomics, transcriptomics, proteomics, metabolomics, and other levels, which can help us to understand the pathogenesis and development process of diseases more comprehensively as well as develop novel therapeutics and biomarkers for further precision oncology.

  • ORIGINAL ARTICLE
    Renming Fan, Aohua Deng, Ruizhuo Lin, Shuo Zhang, Caiyan Cheng, Junyan Zhuang, Yongrui Hai, Minggao Zhao, Le Yang, Gaofei Wei
    PDF

    Ferroptosis is an iron-dependent cell death form that initiates lipid peroxidation (LPO) in tumors. In recent years, there has been growing interest on ferroptosis, but how to propel it forward translational medicine remains in mist. Although experimental ferroptosis inducers such as RSL3 and erastin have demonstrated bioactivity in vitro, the poor antitumor outcome in animal model limits their development. In this study, we reveal a novel ferroptosis inducer, oxaliplatin–artesunate (OART), which exhibits substantial bioactivity in vitro and vivo, and we verify its feasibility in cancer immunotherapy. For mechanism, OART induces cytoplasmic and mitochondrial LPO to promote tumor ferroptosis, via inhibiting glutathione-mediated ferroptosis defense system, enhancing iron-dependent Fenton reaction, and initiating mitochondrial LPO. The destroyed mitochondrial membrane potential, disturbed mitochondrial fusion and fission, as well as downregulation of dihydroorotate dehydrogenase mutually contribute to mitochondrial LPO. Consequently, OART enhances tumor immunogenicity by releasing damage associated molecular patterns and promoting antigen presenting cells maturation, thereby transforming tumor environment from immunosuppressive to immunosensitive. By establishing in vivo model of tumorigenesis and lung metastasis, we verified that OART improves the systematic immune response. In summary, OART has enormous clinical potential for ferroptosis-based cancer therapy in translational medicine.

  • ORIGINAL ARTICLE
    Shuo Miao, Lanting Yang, Tao Xu, Zhantao Liu, Yixiao Zhang, Lin Ding, Wei Ding, Xiang Ao, Jianxun Wang
    PDF

    Iron overload is common in cardiovascular disease, it is also the factor that drives ferroptosis. Noncoding RNAs play an important role in heart disease; however, their regulatory role in iron overload-mediated ferroptosis remains much unknown. In our study, the iron overload model in mice was constructed through a high-iron diet, and ammonium iron citrate treatment was used to mimic iron overload in vitro. We found iron overload induced ferroptosis in cardiomyocytes, which was dependent on the high expression of transferrin receptor (TFRC). MiR-31-5p was downregulated during iron overload; it inhibited cardiomyocyte ferroptosis by targeting TFRC. CircPIK3C2A, a highly expressed circRNA in the heart, was upregulated when iron was overloaded. CircPIK3C2A enhanced the expression of TFRC by sponging miR-31-5p and promoted ferroptosis during iron overload. Our results reveal a novel mechanistic insight into noncoding RNA-based ferroptosis and identify the circPIK3C2A/miR-31-5p/TFRC axis as a promising therapeutic target for myocardial damage.

  • ORIGINAL ARTICLE
    Danni Cheng, Ke Qiu, Daibo Li, Minzi Mao, Yufang Rao, Yao Song, Lan Feng, Xiuli Shao, Chuanhuan Jiang, Yan Wang, Li Li, Xuemei Chen, Sisi Wu, Haiyang Wang, Jun Liu, Haopeng Yu, Wei Zhang, Fei Chen, Yu Zhao, Jianjun Ren
    PDF

    Tumor-infiltrating CD4+ T cells orchestrate the adaptive immune response through remarkable plasticity, and the expression patterns of exhaustion-related inhibitory receptors in these cells differ significantly from those of CD8+ T cells. Thus, a better understanding of the molecular basis of CD4+ T cell exhaustion and their responses to immune checkpoint blockade (ICB) is required. Here, we integrated multiomics approaches to define the phenotypic and molecular profiles of exhausted CD4+ T cells in oropharyngeal squamous cell carcinoma (OPSCC). Two distinct immune-promoting (Module 1) and immunosuppressive (Module 2) functional modules in tumor-infiltrating CD4+ T cells were identified, and both the immune-promoting function of Module 1 cells and immunosuppressive function of Module 2 cells were positively associated with their corresponding exhaustion states. Furthermore, the application of ICBs targeting effector CD4+ T cells in Module 1 (αPD-1) and Treg cells in Module 2 (αCTLA-4) in mouse models could help reinvigorate the effector function of Module 1-exhausted CD4+ T cells and reduce the immunosuppressive function of Module 2-exhausted CD4+ T cells, ultimately promoting OPSCC tumor regression. Taken together, our study provides a crucial cellular basis for the selection of optimal ICB in treating OPSCC.

  • REVIEW
    André T. S. Vicente, Jorge A. R. Salvador
    PDF

    Leukemia is a heterogeneous group of life-threatening malignant disorders of the hematopoietic system. Immunotherapy, radiotherapy, stem cell transplantation, targeted therapy, and chemotherapy are among the approved leukemia treatments. Unfortunately, therapeutic resistance, side effects, relapses, and long-term sequelae occur in a significant proportion of patients and severely compromise the treatment efficacy. The development of novel approaches to improve outcomes is therefore an unmet need. Recently, novel leukemia drug discovery strategies, including targeted protein degradation, have shown potential to advance the field of personalized medicine for leukemia patients. Specifically, PROteolysis-TArgeting Chimeras (PROTACs) are revolutionary compounds that allow the selective degradation of a protein by the ubiquitin–proteasome system. Developed against a wide range of cancer targets, they show promising potential in overcoming many of the drawbacks associated with conventional therapies. Following the exponential growth of antileukemic PROTACs, this article reviews PROTAC-mediated degradation of leukemia-associated targets. Chemical structures, in vitro and in vivo activities, pharmacokinetics, pharmacodynamics, and clinical trials of PROTACs are critically discussed. Furthermore, advantages, challenges, and future perspectives of PROTACs in leukemia are covered, in order to understand the potential that these novel compounds may have as future drugs for leukemia treatment.

  • ORIGINAL ARTICLE
    Pengyan Lu, Shumin Deng, Jiaxin Liu, Qing Xiao, Zhengwei Zhou, Shuojie Li, Jiaxuan Xin, Guang Shu, Bo Yi, Gang Yin
    PDF

    Colorectal cancer (CRC) is one of the leading cancers worldwide, with metastasis being a major cause of high mortality rates among patients. In this study, dysregulated gene Tweety homolog 3 (TTYH3) was identified by Gene Expression Omnibus database. Public databases were used to predict potential competing endogenous RNAs (ceRNAs) for TTYH3. Quantitative real-time polymerase chain reaction, western blot, and immunohistochemistry were utilized to analyze TTYH3 and histone deacetylase 7 (HDAC7) levels. Luciferase assays confirmed miR-1271-5p directly targeting the 3′ untranslated regions of TTYH3 and HDAC7. In vitro experiments such as transwell and human umbilical vein endothelial cell tube formation, as well as in vivo mouse models, were conducted to assess the biological functions of TTYH3 and HDAC7. We discovered that upregulation of TTYH3 in CRC promotes cell migration by affecting the Epithelial–mesenchymal transition pathway, which was independent of its ion channel activity. Mechanistically, TTYH3 and HDAC7 functioned as ceRNAs, reciprocally regulating each other's expression. TTYH3 competes for binding miR-1271-5p, increasing HDAC7 expression, facilitating CRC metastasis and angiogenesis. This study reveals the critical role of TTYH3 in promoting CRC metastasis through ceRNA crosstalk, offering new insights into potential therapeutic targets for clinical intervention.

  • REVIEW
    Tikam Chand Dakal, Bhanupriya Dhabhai, Anuja Pant, Kareena Moar, Kanika Chaudhary, Vikas Yadav, Vipin Ranga, Narendra Kumar Sharma, Abhishek Kumar, Pawan Kumar Maurya, Jarek Maciaczyk, Ingo G. H. Schmidt-Wolf, Amit Sharma
    PDF

    Cancer, being the most formidable ailment, has had a profound impact on the human health. The disease is primarily associated with genetic mutations that impact oncogenes and tumor suppressor genes (TSGs). Recently, growing evidence have shown that X-linked TSGs have specific role in cancer progression and metastasis as well. Interestingly, our genome harbors around substantial portion of genes that function as tumor suppressors, and the X chromosome alone harbors a considerable number of TSGs. The scenario becomes even more compelling as X-linked TSGs are adaptive to key epigenetic processes such as X chromosome inactivation. Therefore, delineating the new paradigm related to X-linked TSGs, for instance, their crosstalk with autosome and involvement in cancer initiation, progression, and metastasis becomes utmost importance. Considering this, herein, we present a comprehensive discussion of X-linked TSG dysregulation in various cancers as a consequence of genetic variations and epigenetic alterations. In addition, the dynamic role of X-linked TSGs in sex chromosome–autosome crosstalk in cancer genome remodeling is being explored thoroughly. Besides, the functional roles of ncRNAs, role of X-linked TSG in immunomodulation and in gender-based cancer disparities has also been highlighted. Overall, the focal idea of the present article is to recapitulate the findings on X-linked TSG regulation in the cancer landscape and to redefine their role toward improving cancer treatment strategies.

  • ORIGINAL ARTICLE
    Yu Lei, Xin Zhang, Wei Ni, Chao Gao, Yanjiang Li, Heng Yang, Xinjie Gao, Ding Xia, Xia Zhang, Karol Osipowicz, Stephane Doyen, Michael E. Sughrue, Yuxiang Gu, Ying Mao
    PDF

    How brain functions in the distorted ischemic state before and after reperfusion is unclear. It is also uncertain whether there are any indicators within ischemic brain that could predict surgical outcomes. To alleviate these issues, we applied individual brain connectome in chronic steno-occlusive vasculopathy (CSOV) to map both ischemic symptoms and their postbypass changes. A total of 499 bypasses in 455 CSOV patients were collected and followed up for 47.8 ± 20.5 months. Using multimodal parcellation with connectivity-based and pathological distortion-independent approach, areal MR features of brain connectome were generated with three measurements of functional connectivity (FC), structural connectivity, and PageRank centrality at the single-subject level. Thirty-three machine-learning models were then trained with clinical and areal MR features to obtain acceptable classifiers for both ischemic symptoms and their postbypass changes, among which, 11 were deemed acceptable (AUC > 0.7). Notably, the FC feature-based model for long-term neurological outcomes performed very well (AUC > 0.8). Finally, a Shapley additive explanations plot was adopted to extract important individual features in acceptable models to generate “fingerprints” of brain connectome. This study not only establishes brain connectomic fingerprint databases for brain ischemia with distortion, but also provides informative insights for how brain functions before and after reperfusion.

  • ORIGINAL ARTICLE
    Zhonghan Zhang, Jinhui Xue, Yunpeng Yang, Wenfeng Fang, Yan Huang, Shen Zhao, Fan Luo, Jiaxin Cao, Kangmei Zeng, Wenjuan Ma, Jianhua Zhan, Feiteng Lu, Li Zhang, Hongyun Zhao
    PDF

    TP53 comutation is related to poor prognosis of non-small cell lung cancer. However, there is limited study focusing on the structural influence of TP53 mutation on third-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) treatment. We retrospectively analyzed the clinical and molecular data of patients treated with third-generation EGFR-TKIs in two independent cohorts. A total of 117 patients from the Sun Yat-sen University Cancer Center (SYSUCC) and 141 patients from the American Association for Cancer Research Project GENIE database were included. In the SYSUCC cohort, TP53 comutations were found in 59 patients (50.4%) and were associated with poor median progress-free survival (mPFS) and median overall survival (mOS). The additional subtype analysis found that TP53 mutation in the alpha-helix region had shorter mOS compared with those with TP53 mutations in other regions in the SYSUCC cohort (mOS, 12.2 vs. 21.7 months; p = 0.027). Similar findings were confirmed in the GENIE cohort. Specifically, the presence of TP53 mutation in the alpha-helix region was an independent negative predictive factor for PFS [hazard ratio (HR) 2.05(1.01–4.18), p = 0.048] and OS [HR 3.62(1.60–8.17), p = 0.002] in the SYSUCC cohort. TP53 mutation in alpha-helix region was related to inferior clinical outcomes in patients treated with third-generation EGFR-TKIs.

  • ORIGINAL ARTICLE
    Xiaoyong Li, Jin Zhang, Yaxin Xiao, Hao Song, Yuexiang Li, Wei Li, Ruiyuan Cao, Song Li, Yong Qin, Chu Wang, Wu Zhong
    PDF

    Human enterovirus A71 (EV-A71) is a significant etiological agent responsible for epidemics of hand, foot, and mouth disease (HFMD) in Asia-Pacific regions. There are presently no licensed antivirals against EV-A71, and the druggable target for EV-A71 remains very limited. The phenotypic hit 10,10′-bis(trifluoromethyl) marinopyrrole A derivative, herein termed MPA-CF3, is a novel potent small-molecule inhibitor against EV-A71, but its pharmacological target(s) and antiviral mechanisms are not defined. Here, quantitative chemoproteomics deciphered the antiviral target of MAP-CF3 as host factor coatomer subunit zeta-1 (COPZ1). Mechanistically, MPA-CF3 disrupts the interaction of COPZ1 with the EV-A71 nonstructural protein 2C by destabilizing COPZ1 upon binding. The destruction of this interaction blocks the coatomer-mediated transport of 2C to endoplasmic reticulum, and ultimately inhibits EV-A71 replication. Taken together, our study disclosed that MPA-CF3 can be a structurally novel host-targeting anti-EV-A71 agent, providing a structural basis for developing the COPZ1-targeting broad-spectrum antivirals against enteroviruses. The mechanistic elucidation of MPA-CF3 against EV-A71 may offer an alternative COPZ1-involved therapeutic pathway for enterovirus infection.

  • ORIGINAL ARTICLE
    Zhengtao Liu, Hai Zhu, Junsheng Zhao, Lu Yu, Shuping Que, Jun Xu, Lei Geng, Lin Zhou, Luca Valenti, Shusen Zheng
    PDF

    To identify the mechanism underlying macrosteatosis (MaS)-related graft failure (GF) in liver transplantation (LT) by multi-omics network analysis. The transcriptome and metabolome were assayed in graft and recipient plasma in discovery (n = 68) and validation (n = 89) cohorts. Differentially expressed molecules were identified by MaS and GF status. Transcriptional regulatory networks were generated to explore the mechanism for MaS-related inferior post-transplant prognosis. The differentially expressed molecules associated with MaS and GF were enriched in ferroptosis and peroxisome-related pathways. Core features of MaS-related GF were presented on decreased transferrin and impaired anti-oxidative capacity dependent upon dysregulation of transcription factors hepatocyte nuclear factor 4A (HNF4A) and hypoxia-inducible factor 1A (HIF1A). Furthermore, miR-362-3p and miR-299-5p inhibited transferrin and HIF1A expression, respectively. Lower M2 macrophages but higher memory CD4 T cells were observed in MaS-related GF cases. These results were validated in clinical specimens and cellular models. Systemic analysis of multi-omics data depicted a panorama of biological pathways deregulated in MaS-related GF. Transcriptional regulatory networks centered on transferrin and anti-oxidant responses were associated with poor MaS graft quality, qualifying as potential targets to improve prognosis of patients after LT.

  • LETTER
    Haijun Tang, Yanhang Zhuo, Xiaohong Du, Frank Xiao-Feng Qin, Yi Huang
    PDF
  • ORIGINAL ARTICLE
    Yalun Li, Liyan Ji, Yingqian Zhang, Jiexin Zhang, Alexandre Reuben, Hao Zeng, Qin Huang, Qi Wei, Sihan Tan, Xuefeng Xia, Weimin Li, Jianjun Zhang, Panwen Tian
    PDF

    Tumor mutational burden (TMB) and T-cell receptor (TCR) might predict the response to immunotherapy in patients with non–small cell lung cancer (NSCLC). However, the predictive value of the combination of TMB and TCR was not clear. Targeted DNA and TCR sequencing were performed on tumor biopsy specimens. We combined TMB and TCR diversity into a TMB-and-TCR (TMR) score using logistic regression. In total, 38 patients with advanced NSCLC were divided into a discovery set (n = 17) and validation set (n = 21). A higher TMR score was associated with better response and longer progression-free survival to immunotherapy in both the discovery set and validation set. The performance of TMR score was confirmed in the two external validation cohorts of 225 NSCLC patients and 306 NSCLC patients. Tumors with higher TMR scores were more likely to combine with LRP1B gene mutation (p = 0.027) and top 1% CDR3 sequences (p = 0.001). Furthermore, LRP1B allele frequency was negatively correlated with the top 1% CDR3 sequences (r = –0.55, p = 0.033) and positively correlated with tumor shrinkage (r = 0.68, p = 0.007). The TMR score could serve as a potential predictive biomarker for the response to immunotherapy in advanced NSCLC.

  • ORIGINAL ARTICLE
    Ming Wang, Yijie Han, Xiaohan Yao, Xixi Duan, Jiajia Wan, Xiaohan Lou, Yan Yan, Peiguo Zheng, Fazhan Wang, Linyu Zhu, Chen Ni, Zhenzhen Pan, Zihao Wang, Lin Chen, Zhaoqing Wang, Zhihai Qin
    PDF

    During the ageing process, TNF-α can promote the expansion of myeloid-derived suppressor cells (MDSCs). However, it remains unclear which receptor(s) of TNF-α are involved in and how they modulate this process. Here, we report that TNFR2 hyperexpression induced by either TNF-α or IL-6, two proinflammatory factors of senescence-associated secretory phenotype (SASP), causes cellular apolarity and differentiation inhibition in aged MDSCs. Ex vivo overexpression of TNFR2 in young MDSCs inhibited their polarity and differentiation, whereas in vivo depletion of Tnfr2 in aged MDSCs promotes their differentiation. Consequently, the age-dependent increase of TNFR2 versus unaltered TNFR1 expression in aged MDSCs significantly shifts the balance of TNF-α signaling toward the TNFR2–JNK axis, which accounts for JNK-induced impairment of cell polarity and differentiation failure of aged MDSCs. Consistently, inhibiting JNK attenuates apolarity and partially restores the differentiation capacity of aged MDSCs, suggesting that upregulated TNFR2/JNK signaling is a key factor limiting MDSC differentiation during organismal ageing. Therefore, abnormal hyperexpression of TNFR2 represents a general mechanism by which extrinsic SASP signals disrupt intrinsic cell polarity behavior, thereby arresting mature differentiation of MDSCs with ageing, suggesting that TNFR2 could be a potential therapeutic target for intervention of ageing through rejuvenation of aged MDSCs.

  • ORIGINAL ARTICLE
    Yue Xin, Changxing Gao, Lai Wang, Qianmei Liu, Qianjin Lu
    PDF

    Noncanonical pyroptosis is triggered by Caspase 4/5/11, which cleaves Gasdermin D (GSDMD), leading to cell lysis. While GSDMD has been studied previously in systemic lupus erythematosus (SLE), the role of pyroptosis in SLE pathogenesis remains unclear and contentious, with limited understanding of Caspase 11-mediated pyroptosis in this condition. In this study, we explored the level of Caspase 11-mediated pyroptosis in SLE, identifying both the upstream pathways and the interaction between pyroptosis and adaptive immune responses. We observed increased Caspase 5/11 and GSDMD-dependent pyroptosis in the macrophages/monocytes of both lupus patients and mice. We identified serum lipopolysaccharide (LPS), released from the gut due to a compromised gut barrier, as the signal that triggers Caspase 11 activation in MRL/lpr mice. We further discovered that pyroptotic macrophages promote the differentiation of mature B cells independently of T cells. Additionally, inhibiting Caspase 11 and preventing LPS leakage proved effective in improving lupus symptoms in MRL/lpr mice. These findings suggest that elevated serum LPS, resulting from a damaged gut barrier, induces Caspase 11/GSDMD-mediated pyroptosis, which in turn promotes B cell differentiation and enhances autoimmune responses in SLE. Thus, targeting Caspase 11 could be a viable therapeutic strategy for SLE.

  • ORIGINAL ARTICLE
    Zitong Zhao, Yingni Deng, Jing Han, Liying Ma, Yumeng Zhu, Hua Zhang, Zhixu He, Yongmei Song
    PDF

    The primary challenge in treating esophageal squamous cell carcinoma (ESCC) is resistance to chemotherapy. Cancer stem cell (CSC) is the root cause of tumor drug resistance. Therefore, targeting CSCs has been considered promising therapeutic strategy for tumor treatment. Here, we report that circMALAT1 was significantly upregulated in ESCC CSC-like cells and primary tumors from ESCC patients. Clinically, there was a positive correlation between circMALAT1 expression and ESCC stage and lymph node metastasis, as well as poor prognosis for ESCC patients. In vitro and in vivo functional studies revealed that circ-MALAT1 promoted CSC-like cells expansion, tumor growth, lung metastasis and drug resistance of ESCC. Mechanistically, circMALAT1 directly interacted with CSC-functional protein Musashi RNA Binding Protein 2 (MSI2). Circ-MALAT1 inhibited MSI2 ubiquitination by preventing it from interacting with β-transducin repeat containing protein (BTRC) E3 ubiquitin ligase. Also, circ-MALAT1 knockdown inhibited the expression of MSI2-regulating CSC-markers c-Myc in ESCC. Collectively, circMALAT1 modulated the ubiquitination and degradation of the MSI2 protein signaling with ESCC CSCs and accelerated malignant progression of ESCC. CircMALAT1 has the potential to serve as a biomarker for drug resistance and as a target for therapy in CSCs within ESCC.

  • ORIGINAL ARTICLE
    Shuo Liu, Li Zhang, Wangjun Fu, Ziteng Liang, Yuanling Yu, Tao Li, Jincheng Tong, Fan Liu, Jianhui Nie, Qiong Lu, Shuaiyao Lu, Weijin Huang, Youchun Wang
    PDF

    Spike-protein-based pseudotyped viruses were used to evaluate vaccines during the COVID-19 pandemic. However, they cannot be used to evaluate the envelope (E), membrane (M), and nucleocapsid (N) proteins. The first generation of virus-like particle (VLP) pseudotyped viruses contains these four structural proteins, but their titers for wild-type severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are relatively low, even lower for the omicron variant, rendering them unsuitable for neutralizing antibody detection. By optimizing the spike glycoprotein signal peptide, substituting the complexed M and E proteins with SARS-COV-1, optimizing the N protein with specific mutations (P199L, S202R, and R203M), and truncating the packaging signal, PS9, we increased the titer of the wild-type VLP pseudotyped virus over 100-fold, and successfully packaged the omicron VLP pseudotyped virus. The SARS-CoV-2 VLP pseudotyped viruses maintained stable titers, even through 10 freeze–thaw cycles. The key neutralization assay parameters were optimized, including cell type, cell number, and viral inoculum. The assay demonstrated minimal variation in both intra- and interassay results, at 11.5% and 11.1%, respectively. The correlation between the VLP pseudotyped virus and the authentic virus was strong (r = 0.9). Suitable for high-throughput detection of various mutant strains in clinical serum. In summary, we have developed a reliable neutralization assay for SARS-CoV-2 based on VLP pseudotyped virus.

  • HIGHLIGHT
    Jingjing Chen, Dexuan Wang, Hu Zhang
    PDF