Neurotransmitter accumulation and Parkinson's disease-like phenotype caused by anion channelrhodopsin opto-controlled astrocytic mitochondrial depolarization in substantia nigra pars compacta

Sen-Miao Li1,2,3, Dian-Dian Wang1,2,3, Dan-Hua Liu1,2,3, Xiao-Yan Meng1,2,3, Zhizhong Wang4, Xitong Guo5, Qian Liu6, Pei-Pei Liu1, Shu-Ang Li1, Songwei Wang4, Run-Zhou Yang1(), Yuming Xu2,7,8(), Longde Wang2,7,8(), Jian-Sheng Kang1()

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (6) : e568. DOI: 10.1002/mco2.568
ORIGINAL ARTICLE

Neurotransmitter accumulation and Parkinson's disease-like phenotype caused by anion channelrhodopsin opto-controlled astrocytic mitochondrial depolarization in substantia nigra pars compacta

  • Sen-Miao Li1,2,3, Dian-Dian Wang1,2,3, Dan-Hua Liu1,2,3, Xiao-Yan Meng1,2,3, Zhizhong Wang4, Xitong Guo5, Qian Liu6, Pei-Pei Liu1, Shu-Ang Li1, Songwei Wang4, Run-Zhou Yang1(), Yuming Xu2,7,8(), Longde Wang2,7,8(), Jian-Sheng Kang1()
Author information +
History +

Abstract

Parkinson's disease (PD) is a mitochondria-related neurodegenerative disease characterized by locomotor deficits and loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc). Majority of PD research primarily focused on neuronal dysfunction, while the roles of astrocytes and their mitochondria remain largely unexplored. To bridge the gap and investigate the roles of astrocytic mitochondria in PD progression, we constructed a specialized optogenetic tool, mitochondrial-targeted anion channelrhodopsin, to manipulate mitochondrial membrane potential in astrocytes. Utilizing this tool, the depolarization of astrocytic mitochondria within the SNc in vivo led to the accumulation of γ-aminobutyric acid (GABA) and glutamate in SNc, subsequently resulting in excitatory/inhibitory imbalance and locomotor deficits. Consequently, in vivo calcium imaging and interventions of neurotransmitter antagonists demonstrated that GABA accumulation mediated movement deficits of mice. Furthermore, 1 h/day intermittent astrocytic mitochondrial depolarization for 2 weeks triggered spontaneous locomotor dysfunction, α-synuclein aggregation, and the loss of DA neurons, suggesting that astrocytic mitochondrial depolarization was sufficient to induce a PD-like phenotype. In summary, our findings suggest the maintenance of proper astrocytic mitochondrial function and the reinstatement of a balanced neurotransmitter profile may provide a new angle for mitigating neuronal dysfunction during the initial phases of PD.

Keywords

anion channelrhodopsin / astrocyte / GABA / glutamate / mitochondria / optogenetics / Parkinson's Disease

Cite this article

Download citation ▾
Sen-Miao Li, Dian-Dian Wang, Dan-Hua Liu, Xiao-Yan Meng, Zhizhong Wang, Xitong Guo, Qian Liu, Pei-Pei Liu, Shu-Ang Li, Songwei Wang, Run-Zhou Yang, Yuming Xu, Longde Wang, Jian-Sheng Kang. Neurotransmitter accumulation and Parkinson's disease-like phenotype caused by anion channelrhodopsin opto-controlled astrocytic mitochondrial depolarization in substantia nigra pars compacta. MedComm, 2024, 5(6): e568 https://doi.org/10.1002/mco2.568

References

1 RL Albin, AB Young, JB Penney. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989;12(10):366-375.
2 CE Clarke. Parkinson's disease. BMJ. 2007;335(7617):441-445.
3 HDE Booth, WD Hirst, R Wade-Martins. The role of astrocyte dysfunction in Parkinson's disease pathogenesis. Trends Neurosci. 2017;40(6):358-370.
4 SA Liddelow, KA Guttenplan, LE Clarke, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481-487.
5 AU Joshi, PS Minhas, SA Liddelow, et al. Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat Neurosci. 2019;22(10):1635-1648.
6 JL Zamanian, L Xu, LC Foo, et al. Genomic analysis of reactive astrogliosis. J Neurosci. 2012;32(18):6391-6410.
7 SP Yun, TI Kam, N Panicker, et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson's disease. Nat Med. 2018;24(7):931-938.
8 PJ Magistretti, I Allaman. Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci. 2018;19(4):235-249.
9 A Schousboe, LK Bak, HS Waagepetersen. Astrocytic control of biosynthesis and turnover of the neurotransmitters glutamate and GABA. Front Endocrinol. 2013;4.
10 K Hayakawa, E Esposito, X Wang, et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature. 2016;535(7613):551-555.
11 O Davis C ha, KY Kim, EA Bushong, et al. Transcellular degradation of axonal mitochondria. Proc Natl Acad Sci USA. 2014;111(26):9633-9638.
12 B Yoon, J Woo, Y Chun, et al. Glial GABA, synthesized by monoamine oxidase B, mediates tonic inhibition. J Physiol. 2014;592(22):4951-4968.
13 JY Heo, MH Nam, HH Yoon, et al. Aberrant tonic inhibition of dopaminergic neuronal activity causes motor symptoms in animal models of Parkinson's disease. Curr Biol. 2020;30(2):276-291. e9.
14 CY Kiessling, K Lanza, E Feinberg, C Bishop. Dopamine receptor cooperativity synergistically drives dyskinesia, motor behavior, and striatal GABA neurotransmission in hemiparkinsonian rats. Neuropharmacology. 2020;174:108138.
15 T Steinkellner, V Zell, ZJ Farino, et al. Role for VGLUT2 in selective vulnerability of midbrain dopamine neurons. J Clin Invest. 2018;128(2):774-788.
16 Y Xing, N Zhang, W Zhang, LM Ren. Bupivacaine indirectly potentiates glutamate-induced intracellular calcium signaling in rat hippocampal neurons by impairing mitochondrial function in cocultured astrocytes. Anesthesiology. 2018;128(3):539-554.
17 VS Van Laar, N Roy, A Liu, et al. Glutamate excitotoxicity in neurons triggers mitochondrial and endoplasmic reticulum accumulation of Parkin, and, in the presence of N-acetyl cysteine, mitophagy. Neurobiol Dis. 2015;74:180-193.
18 RL O'Gorman Tuura, CR Baumann, Dopamine Baumann-VogelHBeyond. GABA, glutamate, and the axial symptoms of Parkinson disease. Front Neurol. 2018;9:806.
19 JB Spinelli, MC Haigis. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol. 2018;20(7):745-754.
20 KF Winklhofer, C Haass. Mitochondrial dysfunction in Parkinson's disease. Biochim Biophys Acta BBA—Mol Basis Dis. 2010;1802(1):29-44.
21 P González-Rodríguez, E Zampese, KA Stout, et al. Disruption of mitochondrial complex I induces progressive parkinsonism. Nature. 2021;599(7886):650-656.
22 CM Bantle, WD Hirst, A Weihofen, E Shlevkov. Mitochondrial dysfunction in astrocytes: a role in Parkinson's disease? Front Cell Dev Biol. 2021;8:608026.
23 K Deisseroth. Optogenetic. Nat Methods. 2011;8(1):26-29.
24 EG Govorunova, OA Sineshchekov, R Janz, X Liu, JL Spudich. Natural light-gated anion channels: a family of microbial rhodopsins for advanced optogenetics. Science. 2015;349(6248):647-650.
25 T Tkatch, E Greotti, G Baranauskas, et al. Optogenetic control of mitochondrial metabolism and Ca 2+ signaling by mitochondria-targeted opsins. Proc Natl Acad Sci USA. 2017;114(26).
26 F Zhang, M Prigge, F Beyrière, et al. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat Neurosci. 2008;11(6):631-633.
27 EG Govorunova, OA Sineshchekov, JL Spudich. Structurally distinct cation channelrhodopsins from cryptophyte algae. Biophys J. 2016;110(11):2302-2304.
28 Y Yamauchi, M Konno, S Ito, SP Tsunoda, K Inoue, H Kandori. Molecular properties of a DTD channelrhodopsin from Guillardia theta. Biophys Physicobiology. 2017;14(0):57-66.
29 K Inoue, S Ito, Y Kato, et al. A natural light-driven inward proton pump. Nat Commun. 2016;7(1):13415.
30 V Shevchenko, T Mager, K Kovalev, et al. Inward H + pump xenorhodopsin: mechanism and alternative optogenetic approach. Sci Adv. 2017;3(9):e1603187.
31 T Kuner, GJ Augustine. A genetically encoded ratiometric indicator for chloride. Neuron. 2000;27(3):447-459.
32 N Kamo, M Muratsugu, R Hongoh, Y Kobatake. Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol. 1979;49(2):105-121.
33 AA Gerencser, C Chinopoulos, MJ Birket, et al. Quantitative measurement of mitochondrial membrane potential in cultured cells: calcium-induced de- and hyperpolarization of neuronal mitochondria: absolute mitochondrial membrane potential in cultured cells. J Physiol. 2012;590(12):2845-2871.
34 J Sakanoue, K Ichikawa, Y Nomura, M Tamura. Rhodamine 800 as a probe of energization of cells and tissues in the near-infrared region: a study with isolated rat liver mitochondria and hepatocytes. J Biochem (Tokyo). 1997;121(1):29-37.
35 XY Meng, DD Wang, TR Xie, et al. A sensitive mitochondrial thermometry 2.0 and the availability of thermogenic capacity of brown adipocyte. Front Physiol. 2022;13:977431.
36 MA Lobas, R Tao, J Nagai, et al. A genetically encoded single-wavelength sensor for imaging cytosolic and cell surface ATP. Nat Commun. 2019;10(1):711.
37 LAV Magno, H Tenza-Ferrer, M Collodetti, et al. Optogenetic stimulation of the M2 cortex reverts motor dysfunction in a mouse model of Parkinson's disease. J Neurosci. 2019;39(17):3234-3248.
38 U Ungerstedt, GW Arbuthnott. Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res. 1970;24(3):485-493.
39 DC Seo, YH Ju, JJ Seo, et al. DDC-promoter-driven chemogenetic activation of SNpc dopaminergic neurons alleviates parkinsonian motor symptoms. Int J Mol Sci. 2023;24(3):2491.
40 S Kaakkola, I K??ri?inen. Circling behavior induced by intranigral injections of GABA and muscimol in rats. Psychopharmacology (Berl). 1980;68(1):31-36.
41 J Estakhr, D Abazari, K Frisby, JM McIntosh, R Nashmi. Differential control of dopaminergic excitability and locomotion by cholinergic inputs in mouse substantia nigra. Curr Biol. 2017;27(13):1900-1914. e4.
42 CK Meshul, N Emre, CM Nakamura, C Allen, MK Donohue, JF Buckman. Time-dependent changes in striatal glutamate synapses following a 6-hydroxydopamine lesion. Neuroscience. 1999;88(1):1-16.
43 GE Meredith, S Totterdell, M Beales, CK Meshul. Impaired glutamate homeostasis and programmed cell death in a chronic MPTP mouse model of Parkinson's disease. Exp Neurol. 2009;219(1):334-340.
44 Y Zhang, X Zhang, S Qu. Ceftriaxone protects astrocytes from MPP+ via suppression of NF-κB/JNK/c-Jun Signaling. Mol Neurobiol. 2015;52(1):78-92.
45 Y Zhang, X Meng, Z Jiao, Y Liu, X Zhang, S Qu. Generation of a novel mouse model of Parkinson's disease via targeted knockdown of glutamate transporter GLT-1 in the substantia nigra. ACS Chem Neurosci. 2020;11(3):406-417.
46 AC Vernon, V Zbarsky, KP Datla, MJ Croucher, DT Dexter. Subtype selective antagonism of substantia nigra pars compacta Group I metabotropic glutamate receptors protects the nigrostriatal system against 6-hydroxydopamine toxicity in vivo. J Neurochem. 2007;103(3):1075-1091.
47 JS Marvin, Y Shimoda, V Magloire, et al. A genetically encoded fluorescent sensor for in vivo imaging of GABA. Nat Methods. 2019;16(8):763-770.
48 JS Marvin, BG Borghuis, L Tian, et al. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat Methods. 2013;10(2):162-170.
49 V Villette, M Chavarha, IK Dimov, et al. Ultrafast two-photon imaging of a high-gain voltage indicator in awake behaving mice. Cell. 2019;179(7):1590-1608. e23.
50 LD Zorova, VA Popkov, EY Plotnikov, et al. Mitochondrial membrane potential. Anal Biochem. 2018;552:50-59.
51 FGABA Windels, Glutamate Not. Controls the activity of substantia nigra reticulata neurons in awake, unrestrained rats. J Neurosci. 2004;24(30):6751-6754.
52 CR Lee, JM Tepper. A calcium-activated nonselective cation conductance underlies the plateau potential in rat substantia nigra GABAergic neurons. J Neurosci. 2007;27(24):6531-6541.
53 MH Nam, M Sa, YH Ju, MG Park, CJ Lee. Revisiting the role of astrocytic MAOB in Parkinson's disease. Int J Mol Sci. 2022;23(8):4453.
54 A Kassis, MC Fichot, MN Horcajada, et al. Nutritional and lifestyle management of the aging journey: a narrative review. Front Nutr. 2023;9:1087505.
55 S Smaji?, CA Prada-Medina, Z Landoulsi, et al. Single-cell sequencing of human midbrain reveals glial activation and a Parkinson-specific neuronal state. Brain. 2022;145(3):964-978.
56 AH Khan, LK Lee, DJ Smith. Single-cell analysis of gene expression in the substantia nigra pars compacta of a pesticide-induced mouse model of Parkinson's disease. Transl Neurosci. 2022;13(1):255-269.
57 X Xiao, H Deng, A Furlan, et al. A genetically defined compartmentalized striatal direct pathway for negative reinforcement. Cell. 2020;183(1):211-227. e20.
PDF

Accesses

Citations

Detail

Sections
Recommended

/