Brassinin alleviates cancer cachexia by suppressing diverse inflammatory mechanisms in mice

Min Hee Yang1, Young Yun Jung1, Jae-Young Um1, Gautam Sethi2(), Kwang Seok Ahn1()

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (6) : e558. DOI: 10.1002/mco2.558
ORIGINAL ARTICLE

Brassinin alleviates cancer cachexia by suppressing diverse inflammatory mechanisms in mice

  • Min Hee Yang1, Young Yun Jung1, Jae-Young Um1, Gautam Sethi2(), Kwang Seok Ahn1()
Author information +
History +

Abstract

Cancer cachexia is a multifactorial condition that contributes to the death of about 20% of cancer patients. It has the potential to cause weight loss, reduction in muscle mass, and loss of fat tissue, significantly lowering the quality of life. Currently, there are no approved drugs for cancer cachexia. Here, we have explored the possible impact of brassinin (BSN) on cancer cachexia under in vitro and in vivo settings. After differentiation, C2C12 and 3T3-L1 cells were incubated with colorectal carcinoma cells conditioned media or BSN. For preclinical studies, mice were injected with HT-29 cells followed by intraperitoneal administration of BSN, and muscle and adipose tissues were evaluated by Western blotting and hematoxylin and eosin staining. BSN effectively suppressed muscle atrophy by down-regulating the levels of Muscle RING-finger protein-1 and Atrogin-1, while also increasing the expression of myosin heavy chain in cachexia-induced-C2C12 myotubes. The induction of adipogenesis by BSN prevented adipocyte atrophy in cachexia-induced 3T3-L1 adipocytes. We also noted that BSN disrupted the interaction between COX-2 and signaling transducer and activator of transcription 3 (STAT3) promoter, leading to down-regulation of STAT3 activation. Moreover, it was found that BSN inhibited weight loss in mice and demonstrated anti-cachexic effects. Overall, our observations indicate that BSN can attenuate cancer cachexia through diverse mechanisms.

Keywords

Adipocyte atrophy / Brassinin / Cancer cachexia / Muscle atrophy / STAT3

Cite this article

Download citation ▾
Min Hee Yang, Young Yun Jung, Jae-Young Um, Gautam Sethi, Kwang Seok Ahn. Brassinin alleviates cancer cachexia by suppressing diverse inflammatory mechanisms in mice. MedComm, 2024, 5(6): e558 https://doi.org/10.1002/mco2.558

References

1 KC Fearon, DJ Glass, DC Guttridge. Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab. 2012;16(2):153-166. doi:
2 JM Argiles, S Busquets, B Stemmler, FJ Lopez-Soriano. Cancer cachexia: understanding the molecular basis. Nat Rev Cancer. 2014;14(11):754-762. doi:
3 L Chen, W Xu, Q Yang, et al. Imperatorin alleviates cancer cachexia and prevents muscle wasting via directly inhibiting STAT3. Pharmacol Res. 2020;158:104871. doi:
4 N Shyh-Chang. Metabolic changes during cancer cachexia pathogenesis. Adv Exp Med Biol. 2017;1026:233-249. doi:
5 Q Shen, JX Kuang, CX Miao, et al. Alantolactone ameliorates cancer cachexia-associated muscle atrophy mainly by inhibiting the STAT3 signaling pathway. Phytomedicine. 2022;95:153858. doi:
6 SK Shukla, SD Markov, KS Attri, et al. Macrophages potentiate STAT3 signaling in skeletal muscles and regulate pancreatic cancer cachexia. Cancer Lett. 2020;484:29-39. doi:
7 YY Jung, JH Ko, JY Um, G Sethi, KS Ahn. A novel role of bergamottin in attenuating cancer associated cachexia by diverse molecular mechanisms. Cancers. 2021;13(6):1347. doi:
8 M Ashrafizadeh, A Zarrabi, E Mostafavi, et al. Non-coding RNA-based regulation of inflammation. Semin Immunol. 2022;59:101606. doi:
9 K Fearon, F Strasser, SD Anker, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12(5):489-495. doi:
10 T Aoyagi, KP Terracina, A Raza, H Matsubara, K Takabe. Cancer cachexia, mechanism and treatment. World J Gastrointest Oncol. 2015;7(4):17-29. doi:
11 M Muscaritoli, SD Anker, J Argiles, et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr. 2010;29(2):154-159. doi:
12 H Watanabe, T Oshima. The latest treatments for cancer cachexia: an overview. Anticancer Res. 2023;43(2):511-521. doi:
13 G Mantovani, C Madeddu. Cyclooxygenase-2 inhibitors and antioxidants in the treatment of cachexia. Curr Opin Support Palliat Care. 2008;2(4):275-281. doi:
14 G Mantovani, A Maccio, C Madeddu, et al. Phase II nonrandomized study of the efficacy and safety of COX-2 inhibitor celecoxib on patients with cancer cachexia. J Mol Med. 2010;88(1):85-92. doi:
15 TW Davis, BS Zweifel, JM O'Neal, et al. Inhibition of cyclooxygenase-2 by celecoxib reverses tumor-induced wasting. J Pharmacol Exp Ther. 2004;308(3):929-934. doi:
16 R Dhanapal, T Saraswathi, RN Govind. Cancer cachexia. J Oral Maxillofac Pathol. 2011;15(3):257-260. doi:
17 PE Porporato. Understanding cachexia as a cancer metabolism syndrome. Oncogenesis. 2016;5:e200. doi:
18 WE Mitch, AL Goldberg. Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway. N Engl J Med. 1996;335(25):1897-1905. doi:
19 KA Silva, J Dong, Y Dong, et al. Inhibition of Stat3 activation suppresses caspase-3 and the ubiquitin-proteasome system, leading to preservation of muscle mass in cancer cachexia. J Biol Chem. 2015;290(17):11177-11187. doi:
20 L Zhang, J Pan, Y Dong, et al. Stat3 activation links a C/EBPdelta to myostatin pathway to stimulate loss of muscle mass. Cell Metab. 2013;18(3):368-379. doi:
21 D Morgan, M Garg, V Tergaonkar, SY Tan, G Sethi. Pharmacological significance of the non-canonical NF-kappaB pathway in tumorigenesis. Biochim Biophys Acta Rev Cancer. 2020;1874(2):188449. doi:
22 JH Lee, C Kim, SH Baek, et al. Capsazepine inhibits JAK/STAT3 signaling, tumor growth, and cell survival in prostate cancer. Oncotarget. 2017;8(11):17700-17711. doi:
23 Y Ono, M Saito, K Sakamoto, et al. C188-9, a specific inhibitor of STAT3 signaling, prevents thermal burn-induced skeletal muscle wasting in mice. Front Pharmacol. 2022;13:1031906. doi:
24 GG Eskiler, E Bezdegumeli, Z Ozman, et al. IL-6 mediated JAK/STAT3 signaling pathway in cancer patients with cachexia. Bratisl Lek Listy. 2019;66(11):819-826. doi:
25 A Miller, L McLeod, S Alhayyani, et al. Blockade of the IL-6 trans-signalling/STAT3 axis suppresses cachexia in Kras-induced lung adenocarcinoma. Oncogene. 2017;36(21):3059-3066. doi:
26 A Garcia-Valverde, J Rosell, S Sayols, et al. E3 ubiquitin ligase Atrogin-1 mediates adaptive resistance to KIT-targeted inhibition in gastrointestinal stromal tumor. Oncogene. 2021;40(48):6614-6626. doi:
27 VC Foletta, LJ White, AE Larsen, B Leger, AP Russell. The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflugers Arch. 2011;461(3):325-335. doi:
28 Y Zhang, X Han, B Ouyang, et al. Chinese herbal medicine Baoyuan Jiedu Decoction inhibited muscle atrophy of cancer cachexia through Atrogin-l and MuRF-1. Evid Based Complement Alternat Med. 2017;2017:6268378. doi:
29 A Sukari, I Muqbil, RM Mohammad, PA Philip, AS Azmi. F-BOX proteins in cancer cachexia and muscle wasting: emerging regulators and therapeutic opportunities. Semin Cancer Biol. 2016;36:95-104. doi:
30 K Fearon, J Arends, V Baracos. Understanding the mechanisms and treatment options in cancer cachexia. Nat Rev Clin Oncol. 2013;10(2):90-99. doi:
31 J Han, L Shen, Z Zhan, et al. The long noncoding RNA MALAT1 modulates adipose loss in cancer-associated cachexia by suppressing adipogenesis through PPAR-gamma. Nutr Metab. 2021;18(1):27. doi:
32 M Tsoli, MM Swarbrick, GR Robertson. Lipolytic and thermogenic depletion of adipose tissue in cancer cachexia. Semin Cell Dev Biol. 2016;54:68-81. doi:
33 C Bing, S Russell, E Becket, et al. Adipose atrophy in cancer cachexia: morphologic and molecular analysis of adipose tissue in tumour-bearing mice. Br J Cancer. 2006;95(8):1028-1037. doi:
34 MI Lefterova, Y Zhang, DJ Steger, et al. PPARgamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes Dev. 2008;22(21):2941-2952. doi:
35 YS Hsieh, SF Yang, G Sethi, DN Hu. Natural bioactives in cancer treatment and prevention. Biomed Res Int. 2015;2015:182835. doi:
36 JK Mastron, KS Siveen, G Sethi, A Bishayee. Silymarin and hepatocellular carcinoma: a systematic, comprehensive, and critical review. Anticancer Drugs. 2015;26(5):475-486. doi:
37 JH Lee, A Chinnathambi, SA Alharbi, OHM Shair, G Sethi, KS Ahn. Farnesol abrogates epithelial to mesenchymal transition process through regulating Akt/mTOR pathway. Pharmacol Res. 2019;150:104504. doi:
38 MS Pedras, S Montaut, M Suchy. Phytoalexins from the crucifer rutabaga: structures, syntheses, biosyntheses, and antifungal activity. J Org Chem. 2004;69(13):4471-4476. doi:
39 MH Yang, SH Baek, IJ Ha, JY Um, KS Ahn. Brassinin enhances the anticancer actions of paclitaxel by targeting multiple signaling pathways in colorectal cancer cells. Phytother Res. 2021;35(7):3875-3885. doi:
40 T Hong, J Ham, J Song, G Song, W Lim. Brassinin inhibits proliferation in human liver cancer cells via mitochondrial dysfunction. Cells. 2021;10(2):332. doi:
41 JH Lee, C Kim, G Sethi, KS Ahn. Brassinin inhibits STAT3 signaling pathway through modulation of PIAS-3 and SOCS-3 expression and sensitizes human lung cancer xenograft in nude mice to paclitaxel. Oncotarget. 2015;6(8):6386-6405. doi:
42 MH Yang, JH Lee, JH Ko, SH Jung, G Sethi, KS Ahn. Brassinin represses invasive potential of lung carcinoma cells through deactivation of PI3K/Akt/mTOR signaling cascade. Molecules. 2019;24(8):1584. doi:
43 SM Kim, EY Oh, JH Lee, et al. Brassinin combined with capsaicin enhances apoptotic and anti-metastatic effects in PC-3 human prostate cancer cells. Phytother Res. 2015;29(11):1828-1836. doi:
44 K Kuchta, S Cameron. Phytotherapy for cachexia: where do we stand? Front Pharmacol. 2020;11:917. doi:
45 M Zhang, YL Liu, CY Fu, et al. Expression of MyHC genes, composition of muscle fiber type and their association with intramuscular fat, tenderness in skeletal muscle of Simmental hybrids. Mol Biol Rep. 2014;41(2):833-840. doi:
46 GS de Castro, E Simoes, J Lima, et al. Human cachexia induces changes in mitochondria, autophagy and apoptosis in the skeletal muscle. Cancers. 2019;11(9):1264. doi:
47 VE Baracos, L Martin, M Korc, DC Guttridge, KCH Fearon. Cancer-associated cachexia. Nat Rev Dis Primers. 2018;4:17105. doi:
48 M Petruzzelli, EF Wagner. Mechanisms of metabolic dysfunction in cancer-associated cachexia. Genes Dev. 2016;30(5):489-501. doi:
49 R Stubbins, EH Bernicker, EMM Quigley. Cancer cachexia: a multifactoral disease that needs a multimodal approach. Curr Opin Gastroenterol. 2020;36(2):141-146. doi:
50 MJ Tisdale. Cancer cachexia. Curr Opin Gastroenterol. 2010;26(2):146-151. doi:
51 C Miao, W Zhang, L Feng, et al. Cancer-derived exosome miRNAs induce skeletal muscle wasting by Bcl-2-mediated apoptosis in colon cancer cachexia. Mol Ther Nucleic Acids. 2021;24:923-938. doi:
52 KA Baltgalvis, FG Berger, MM Pena, J Mark Davis, JP White, JA Carson. Activity level, apoptosis, and development of cachexia in Apc(Min/+) mice. J Appl Physiol. 2010;109(4):1155-1161. doi:
53 S Busquets, C Deans, M Figueras, et al. Apoptosis is present in skeletal muscle of cachectic gastro-intestinal cancer patients. Clin Nutr. 2007;26(5):614-618. doi:
54 JH Shaw, RR Wolfe. Fatty acid and glycerol kinetics in septic patients and in patients with gastrointestinal cancer. The response to glucose infusion and parenteral feeding. Ann Surg. 1987;205(4):368-376. doi:
55 Y Ikeda, H Tsuchiya, S Hama, K Kajimoto, K Kogure. Resistin affects lipid metabolism during adipocyte maturation of 3T3-L1 cells. FEBS J. 2013;280(22):5884-5895. doi:
56 A Bonetto, T Aydogdu, N Kunzevitzky, et al. STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia. PLoS One. 2011;6(7):e22538. doi:
57 TA Zimmers, ML Fishel, A Bonetto. STAT3 in the systemic inflammation of cancer cachexia. Semin Cell Dev Biol. 2016;54:28-41. doi:
58 L Chen, Q Yang, H Zhang, et al. Cryptotanshinone prevents muscle wasting in CT26-induced cancer cachexia through inhibiting STAT3 signaling pathway. J Ethnopharmacol. 2020;260:113066. doi:
59 H Tai, C Miyaura, CC Pilbeam, et al. Transcriptional induction of cyclooxygenase-2 in osteoblasts is involved in interleukin-6-induced osteoclast formation. Endocrinology. 1997;138(6):2372-2379. doi:
60 SJ Desai, B Prickril, A Rasooly. Mechanisms of phytonutrient modulation of cyclooxygenase-2 (COX-2) and inflammation related to cancer. Nutr Cancer. 2018;70(3):350-375. doi:
61 H Saito, Y Inagaki, T Tsunenari, et al. Involvement of cyclooxygenase-2 in the tumor site-dependent production of parathyroid hormone-related protein in colon 26 carcinoma. Cancer Sci. 2007;98(10):1563-1569. doi:
62 KS Ahn. Special issue “role of STAT3 in oncogenesis”. Biomedicines. 2022;10(11):2689. doi:
63 YY Jung, C Kim, MK Shanmugam, et al. Leonurine ameliorates the STAT3 pathway through the upregulation of SHP-1 to retard the growth of hepatocellular carcinoma cells. Cell Signal. 2023;114:111003. doi:
64 MH Yang, G Sethi, A Ravish, et al. Discovery of imidazopyridine-pyrazoline-hybrid structure as SHP-1 agonist that suppresses phospho-STAT3 signaling in human breast cancer cells. Chem Biol Interact. 2023;386:110780. doi:
65 S He, G Lu, H Hou, et al. Saikosaponin?d suppresses the expression of cyclooxygenase?2 through the phospho?signal transducer and activator of transcription 3/hypoxia?inducible factor?1alpha pathway in hepatocellular carcinoma cells. Mol Med Rep. 2014;10(5):2556-2562. doi:
66 MH Yang, SH Baek, ST Hwang, JY Um, KS Ahn. Corilagin exhibits differential anticancer effects through the modulation of STAT3/5 and MAPKs in human gastric cancer cells. Phytother Res. 2022;36(6):2449-2462. doi:
67 MH Yang, IJ Ha, SG Lee, JY Um, KS Ahn. Abrogation of STAT3 activation cascade by Ginkgolide C mitigates tumourigenesis in lung cancer preclinical model. J Pharm Pharmacol. 2021;73(12):1630-1642. doi:
68 JH Lee, C Kim, SH Kim, G Sethi, KS Ahn. Farnesol inhibits tumor growth and enhances the anticancer effects of bortezomib in multiple myeloma xenograft mouse model through the modulation of STAT3 signaling pathway. Cancer Lett. 2015;360(2):280-293. doi:
69 MH Yang, IJ Ha, SG Lee, J Lee, JY Um, KS Ahn. Ginkgolide C promotes apoptosis and abrogates metastasis of colorectal carcinoma cells by targeting Wnt/beta-catenin signaling pathway. IUBMB Life. 2021;73(10):1222-1234. doi:
70 KS Ahn, G Sethi, BB Aggarwal. Simvastatin potentiates TNF-alpha-induced apoptosis through the down-regulation of NF-kappaB-dependent antiapoptotic gene products: role of IkappaBalpha kinase and TGF-beta-activated kinase-1. J Immunol. 2007;178(4):2507-2516. doi:
71 G Sethi, KS Ahn, SK Sandur, X Lin, MM Chaturvedi, BB Aggarwal. Indirubin enhances tumor necrosis factor-induced apoptosis through modulation of nuclear factor-kappa B signaling pathway. J Biol Chem. 2006;281(33):23425-23435. doi:
72 YY Jung, IJ Ha, JY Um, G Sethi, KS Ahn. Fangchinoline diminishes STAT3 activation by stimulating oxidative stress and targeting SHP-1 protein in multiple myeloma model. J Adv Res. 2022;35:245-257. doi:
73 KS Ahn, G Sethi, MM Chaturvedi, BB Aggarwal. Simvastatin, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, suppresses osteoclastogenesis induced by receptor activator of nuclear factor-kappaB ligand through modulation of NF-kappaB pathway. Int J Cancer. 2008;123(8):1733-1740. doi:
74 NY Kim, YY Jung, MH Yang, JY Um, G Sethi, KS Ahn. Isoimperatorin down-regulates epithelial mesenchymal transition through modulating NF-kappaB signaling and CXCR4 expression in colorectal and hepatocellular carcinoma cells. Cell Signal. 2022;99:110433. doi:
PDF

Accesses

Citations

Detail

Sections
Recommended

/