Oncogenes and tumor suppressor genes: functions and roles in cancers

Tikam Chand Dakal1(), Bhanupriya Dhabhai1, Anuja Pant2, Kareena Moar2, Kanika Chaudhary3, Vikas Yadav3, Vipin Ranga4, Narendra Kumar Sharma5, Abhishek Kumar6,7, Pawan Kumar Maurya2, Jarek Maciaczyk8, Ingo G. H. Schmidt-Wolf9, Amit Sharma8,9()

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (6) : e582. DOI: 10.1002/mco2.582
REVIEW

Oncogenes and tumor suppressor genes: functions and roles in cancers

  • Tikam Chand Dakal1(), Bhanupriya Dhabhai1, Anuja Pant2, Kareena Moar2, Kanika Chaudhary3, Vikas Yadav3, Vipin Ranga4, Narendra Kumar Sharma5, Abhishek Kumar6,7, Pawan Kumar Maurya2, Jarek Maciaczyk8, Ingo G. H. Schmidt-Wolf9, Amit Sharma8,9()
Author information +
History +

Abstract

Cancer, being the most formidable ailment, has had a profound impact on the human health. The disease is primarily associated with genetic mutations that impact oncogenes and tumor suppressor genes (TSGs). Recently, growing evidence have shown that X-linked TSGs have specific role in cancer progression and metastasis as well. Interestingly, our genome harbors around substantial portion of genes that function as tumor suppressors, and the X chromosome alone harbors a considerable number of TSGs. The scenario becomes even more compelling as X-linked TSGs are adaptive to key epigenetic processes such as X chromosome inactivation. Therefore, delineating the new paradigm related to X-linked TSGs, for instance, their crosstalk with autosome and involvement in cancer initiation, progression, and metastasis becomes utmost importance. Considering this, herein, we present a comprehensive discussion of X-linked TSG dysregulation in various cancers as a consequence of genetic variations and epigenetic alterations. In addition, the dynamic role of X-linked TSGs in sex chromosome–autosome crosstalk in cancer genome remodeling is being explored thoroughly. Besides, the functional roles of ncRNAs, role of X-linked TSG in immunomodulation and in gender-based cancer disparities has also been highlighted. Overall, the focal idea of the present article is to recapitulate the findings on X-linked TSG regulation in the cancer landscape and to redefine their role toward improving cancer treatment strategies.

Keywords

cancer signaling / cancer therapy / ncRNAs / tumor suppressor genes (TSGs) / X chromosome–autosome crosstalk / X-chromosome inactivation

Cite this article

Download citation ▾
Tikam Chand Dakal, Bhanupriya Dhabhai, Anuja Pant, Kareena Moar, Kanika Chaudhary, Vikas Yadav, Vipin Ranga, Narendra Kumar Sharma, Abhishek Kumar, Pawan Kumar Maurya, Jarek Maciaczyk, Ingo G. H. Schmidt-Wolf, Amit Sharma. Oncogenes and tumor suppressor genes: functions and roles in cancers. MedComm, 2024, 5(6): e582 https://doi.org/10.1002/mco2.582

References

1 EN Kontomanolis, A Koutras, A Syllaios, et al. Role of oncogenes and tumor-suppressor genes in carcinogenesis: a review. Anticancer Res. 2020;40(11):6009-6015.
2 E Hernández-Lemus, H Reyes-Gopar, J Espinal-Enríquez, S Ochoa. The many faces of gene regulation in cancer: a computational oncogenomics outlook. Genes. 2019;10(11):865.
3 B Dhabhai, A Sharma, J Maciaczyk, TC Dakal. X-linked tumor suppressor genes act as presumed contributors in the sex chromosome-autosome crosstalk in cancers. Cancer Invest. 2022;40(2):103-110.
4 T Kido, Y Li, Y Tanaka, R Dahiya, Y-F Chris Lau. The X-linked tumor suppressor TSPX downregulates cancer-drivers/oncogenes in prostate cancer in a C-terminal acidic domain dependent manner. Oncotarget. 2019;10(15):1491-1506.
5 R Dhakar, TC Dakal, A Sharma. Genetic determinants of lung cancer: Understanding the oncogenic potential of somatic missense mutations. Genomics. 2022;114(4):110401.
6 B Pereira, S-F Chin, OM Rueda, et al. The somatic mutation profiles of 2,433 breast cancers refine their genomic and transcriptomic landscapes. Nat Commun. 2016;7(1):11479.
7 A Sharma, H Liu, F Tobar-Tosse, et al. Ubiquitin carboxyl-terminal hydrolases (UCHs): potential mediators for cancer and neurodegeneration. Int J Mol Sci. 2020;21(11):3910.
8 H Wang, L Yang, M Liu, J Luo. Protein post-translational modifications in the regulation of cancer hallmarks. Cancer Gene Ther. 2023;30(4):529-547.
9 A Sharma, H Liu, MC Herwig-Carl, T Chand Dakal, IGH Schmidt-Wolf. Epigenetic regulatory enzymes: mutation prevalence and coexistence in cancers. Cancer Invest. 2021;39(3):257-273.
10 A Nebbioso, FP Tambaro, C Dell'Aversana, L Altucci. Cancer epigenetics: moving forward. PLos Genet. 2018;14(6):e1007362.
11 GE Parris. The cell clone ecology hypothesis and the cell fusion model of cancer progression and metastasis: history and experimental support. Med Hypotheses. 2006;66(1):76-83.
12 MD Bashyam, S Animireddy, P Bala, A Naz, SA George. The Yin and Yang of cancer genes. Gene. 2019;704:121-133.
13 NJ Dyson. RB1: a prototype tumor suppressor and an enigma. Genes Dev. 2016;30(13):1492-1502.
14 S Kalsoom, M Wasim, S Afzal, et al. Alterations in the RB1 gene in Pakistani patients with retinoblastoma using direct sequencing analysis. Mol Vis. 2015;21:1085-1092.
15 L Chen, S Liu, Y Tao. Regulating tumor suppressor genes: post-translational modifications. Signal Transduct Target Ther. 2020;5(1):90.
16 L Soucek, JR Whitfield, NM Sodir, et al. Inhibition of Myc family proteins eradicates KRas-driven lung cancer in mice. Genes Dev. 2013;27(5):504-513.
17 AG Knudson Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA. 1971;68(4):820-823.
18 AJ Levine, CA Finlay, PW Hinds. P53 is a tumor suppressor gene. Cell. 2004;116(2):S67-S69. Suppl.
19 S Wang, J Gao, Q Lei, et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell. 2003;4(3):209-221.
20 RE Buller, AK Sood, T Lallas, T Buekers, JS Skilling. Association between nonrandom X-chromosome inactivation and BRCA1 mutation in germline DNA of patients with ovarian cancer. J Natl Cancer Inst. 1999;91(4):339-346.
21 DJ Liao, Q-Q Du, BW Yu, D Grignon, FH Sarkar. Novel perspective: focusing on the X chromosome in reproductive cancers: ESSAY. Cancer Invest. 2003;21(4):641-658.
22 Y Liu, L Wang, P Zheng. X-linked tumor suppressors: perplexing inheritance, a unique therapeutic opportunity. Trends Genet. 2010;26(6):260-265.
23 L Wang, R Liu, W Li, et al. Somatic single hits inactivate the X-linked tumor suppressor FOXP3 in the prostate. Cancer Cell. 2009;16(4):336-346.
24 T Zuo, L Wang, C Morrison, et al. FOXP3 is an X-linked breast cancer suppressor gene and an important repressor of the HER-2/ErbB2 oncogene. Cell. 2007;129(7):1275-1286.
25 EY Lee, WJ Muller. Oncogenes and tumor suppressor genes. Cold Spring Harb Perspect Biol. 2010;2(10):a003236.
26 P Chandrashekar, N Ahmadinejad, J Wang, et al. Somatic selection distinguishes oncogenes and tumor suppressor genes. Bioinformatics. 2020;36(6):1712-1717.
27 J Downward. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer. 2003;3(1):11-22.
28 R Nahta, GN Hortobagyi, FJ Esteva. Growth factor receptors in breast cancer: potential for therapeutic intervention. Oncologist. 2003;8(1):5-17.
29 KV Desai, N Xiao, W Wang, et al. Initiating oncogenic event determines gene-expression patterns of human breast cancer models. Proc Natl Acad Sci USA. 2002;99(10):6967-6972.
30 R Jan, GE Chaudhry. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Adv Pharm Bull. 2019;9(2):205-218.
31 A Klinakis, M Szabolcs, K Politi, H Kiaris, S Artavanis-Tsakonas, A Efstratiadis. Myc is a Notch1 transcriptional target and a requisite for Notch1-induced mammary tumorigenesis in mice. Proc Natl Acad Sci USA. 2006;103(24):9262-9267.
32 S Hutter, S Bolin, H Weishaupt, FJ Swartling. Modeling and targeting MYC genes in childhood brain tumors. Genes (Basel). 2017;8(4):107.
33 X Ji, Y Wang, G Liu. Expression analysis of MYC genes from Tamarix hispida in response to different abiotic stresses. Int J Mol Sci. 2012;13(2):1300-1313.
34 C Osborne, P Wilson, D Tripathy. Oncogenes and tumor suppressor genes in breast cancer: potential diagnostic and therapeutic applications. Oncologist. 2004;9(4):361-377.
35 RM Hudziak, GD Lewis, M Winget, BM Fendly, HM Shepard, A Ullrich. p185 HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Mol Cell Biol. 1989;9(3):1165-1172.
36 P Carter, L Presta, CM Gorman, et al. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci USA. 1992;89(10):4285-4289.
37 RA Clynes, TL Towers, LG Presta, JV Ravetch. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med. 2000;6(4):443-446.
38 CL Vogel, MA Cobleigh, D Tripathy, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol. 2023;41(9):1638-1645.
39 MA Cobleigh, CL Vogel, D Tripathy, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol. 1999;17(9):2639-2639.
40 J Baselga, D Tripathy, J Mendelsohn, et al. Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol. 1996;14(3):737-744.
41 DJ Slamon, B Leyland-Jones, S Shak, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783-792.
42 AG Knudson Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA. 1971;68(4):820-823.
43 Z Liu, A Turkoz, EN Jackson, et al. Notch1 loss of heterozygosity causes vascular tumors and lethal hemorrhage in mice. J Clin Invest. 2011;121(2):800-808.
44 DW Goodrich. The retinoblastoma tumor-suppressor gene, the exception that proves the rule. Oncogene. 2006;25(38):5233-5243.
45 YI Leiderman, S Kiss, S Mukai. Molecular genetics of RB1–the retinoblastoma gene. Semin Ophthalmol. 2007;22(4):247-254.
46 V Mendonca, AC Evangelista, BP Matta, et al. Molecular alterations in retinoblastoma beyond RB1. Exp Eye Res. 2021;211:108753.
47 B Vogelstein, KW Kinzler. Cancer genes and the pathways they control. Nat Med. 2004;10(8):789-799.
48 F Kerangueven, L Essioux, A Dib, et al. Loss of heterozygosity and linkage analysis in breast carcinoma: indication for a putative third susceptibility gene on the short arm of chromosome 8. Oncogene. 1995;10(5):1023-1026.
49 W Burke, M Daly, J Garber, et al. Recommendations for follow-up care of individuals with an inherited predisposition to cancer: II. BRCA1 and BRCA2. JAMA. 1997;277(12):997-1003.
50 GB Mills, Y Lu, X Fang, et al. The role of genetic abnormalities of PTEN and the phosphatidylinositol 3-kinase pathway in breast and ovarian tumorigenesis, prognosis, and therapy. Seminars in oncology: 2001. Elsevier; 2001:125-141.
51 MR Nelen, WC van Staveren, EA Peeters, et al. Germline mutations in the PTEN/MMAC1 gene in patients with Cowden disease. Hum Mol Genet. 1997;6(8):1383-1387.
52 DW Bell, JM Varley, TE Szydlo, et al. Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science. 1999;286(5449):2528-2531.
53 P Vahteristo, J Bartkova, H Eerola, et al. A CHEK2 genetic variant contributing to a substantial fraction of familial breast cancer. Am Hum Genet. 2002;71(2):432-438.
54 Y Shiloh. ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer. 2003;3(3):155-168.
55 KK Khanna. Cancer risk and the ATM gene: a continuing debate. J Natl Cancer Inst. 2000;92(10):795-802.
56 S Park, F Supek, B Lehner. Higher order genetic interactions switch cancer genes from two-hit to one-hit drivers. Nat Commun. 2021;12(1):7051.
57 X Wang, W Hu, X Li, et al. Single-hit inactivation drove tumor suppressor genes out of the X chromosome during evolution. Cancer Res. 2022;82(8):1482-1491.
58 J Lipsick. A history of cancer research: tumor suppressor genes. Cold Spring Harb Perspect Biol. 2020;12(2):a035907.
59 SM Rothenberg, J Settleman. Discovering tumor suppressor genes through genome-wide copy number analysis. Curr Genomics. 2010;11(5):297-310.
60 GJ Pageau, LL Hall, S Ganesan, DM Livingston, JB Lawrence. The disappearing Barr body in breast and ovarian cancers. Nat Rev Cancer. 2007;7(8):628-633.
61 TE Buekers, TA Lallas, RE Buller. Xp22. 2–3 loss of heterozygosity is associated with germline BRCA1 mutation in ovarian cancer. Gynecol Oncol. 2000;76(3):418-422.
62 C Choi, S Cho, I Horikawa, et al. Loss of heterozygosity at chromosome segment Xq25-26.1 in advanced human ovarian carcinomas. Genes Chromosomes Cancer. 1997;20(3):234-242.
63 N Wang, E Cedrone, GR Skuse, R Insel, J Dry. Two identical active X chromosomes in human mammary carcinoma cells. Cancer Genet Cytogenet. 1990;46(2):271-280.
64 ML Loupart, S Adams, JA Armour, R Walker, W Brammar, J Varley. Loss of heterozygosity on the X chromosome in human breast cancer. Genes Chromosomes Cancer. 1995;13(4):229-238.
65 C Choi, MH Kim, SW Juhng. Loss of heterozygosity on chromosome XP22. 2-p22. 13 and Xq26. 1-q27. 1 in human breast carcinomas. J Korean Med Sci. 1998;13(3):311-316.
66 SM Sirchia, L Ramoscelli, FR Grati, et al. Loss of the inactive X chromosome and replication of the active X in BRCA1-defective and wild-type breast cancer cells. Cancer Res. 2005;65(6):2139-2146.
67 S Ganesan, DP Silver, RA Greenberg, et al. BRCA1 supports XIST RNA concentration on the inactive X chromosome. Cell. 2002;111(3):393-405.
68 M Kristiansen, GPS Knudsen, P Maguire, et al. High incidence of skewed X chromosome inactivation in young patients with familial non-BRCA1/BRCA2 breast cancer. J Med Genet. 2005;42(11):877-880.
69 AL Richardson, ZC Wang, A De Nicolo, et al. X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell. 2006;9(2):121-132.
70 S Knuutila, Y Aalto, K Autio, et al. DNA copy number losses in human neoplasms. Am J Pathol. 1999;155(3):683-694.
71 JO Indsto, NT Nassif, RF Kefford, GJ Mann. Frequent loss of heterozygosity targeting the inactive X chromosome in melanoma. Clin Cancer Res. 2003;9(17):6476-6482.
72 F Jiang, J Richter, P Schraml, et al. Chromosomal imbalances in papillary renal cell carcinoma: genetic differences between histological subtypes. Am J Pathol. 1998;153(5):1467-1473.
73 M Mathur, S Das, HH Samuels. PSF-TFE3 oncoprotein in papillary renal cell carcinoma inactivates TFE3 and p53 through cytoplasmic sequestration. Oncogene. 2003;22(32):5031-5044.
74 L Bottarelli, C Azzoni, F Necchi, et al. Sex chromosome alterations associate with tumor progression in sporadic colorectal carcinomas. Clin Cancer Res. 2007;13(15):4365-4370. Pt 1.
75 T D'Adda, L Bottarelli, C Azzoni, et al. Malignancy-associated X chromosome allelic losses in foregut endocrine neoplasms: further evidence from lung tumors. Mod Pathol. 2005;18(6):795-805.
76 S Pizzi, T D'Adda, C Azzoni, et al. Ireland: Malignancy-associated allelic losses on the X-chromosome in foregut but not in midgut endocrine tumours. J Pathol. 2002;196(4):401-407.
77 YJ Chen, A Vortmeyer, Z Zhuang, F Gibril, RT Jensen. X-chromosome loss of heterozygosity frequently occurs in gastrinomas and is correlated with aggressive tumor growth. Cancer. 2004;100(7):1379-1387.
78 C Azzoni, L Bottarelli, S Pizzi, T D'adda, G Rindi, C Bordi. Xq25 and Xq26 identify the common minimal deletion region in malignant gastroenteropancreatic endocrine carcinomas. Virchows Arch. 2006;448(2):119-126.
79 Y Jiao, C Shi, BH Edil, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 2011;331(6021):1199-1203.
80 M Zhao, J Sun, Z Zhao. TSGene: a web resource for tumor suppressor genes. Nucleic Acids Res. 2013;41(D1):D970-D976.
81 J Lever, EY Zhao, J Grewal, MR Jones, SJM Jones. CancerMine: a literature-mined resource for drivers, oncogenes and tumor suppressors in cancer. Nat Methods. 2019;16(6):505-507.
82 J Lyu, JJ Li, J Su, et al. DORGE: Discovery of Oncogenes and tumoR suppressor genes using Genetic and Epigenetic features. Sci Adv. 2020;6(46):eaba6784.
83 JS Chen, WS Hung, HH Chan, SJ Tsai, HS Sun. In silico identification of oncogenic potential of fyn-related kinase in hepatocellular carcinoma. Bioinformatics. 2013;29(4):420-427.
84 Y Yang, LM Fu. TSGDB: a database system for tumor suppressor genes. Bioinformatics. 2003;19(17):2311-2312.
85 M Zhao, J Sun, Z Zhao. TSGene: a web resource for tumor suppressor genes. Nucleic Acids Res. 2013;41(Database issue):D970-D976.
86 SA Forbes, N Bindal, S Bamford, et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 2011;39(Database issue):D945-D950.
87 M Uhlen, L Fagerberg, BM Hallstrom, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.
88 E Cerami, J Gao, U Dogrusoz, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401-404.
89 A Thakur, H Xu, Y Wang, A Bollig, H Biliran, JD Liao. The role of X-linked genes in breast cancer. Breast Cancer Res Treat. 2005;93(2):135-143.
90 CD Hurst, O Alder, FM Platt, et al. Genomic subtypes of non-invasive bladder cancer with distinct metabolic profile and female gender bias in KDM6A mutation frequency. Cancer Cell. 2017;32(5):701-715. .e707.
91 ML Nickerson, GM Dancik, KM Im, et al. Concurrent alterations in TERT, KDM6A, and the BRCA pathway in bladder cancer. Clin Cancer Res. 2014;20(18):4935-4948.
92 K Koike, A Kasamatsu, M Iyoda, et al. High prevalence of epigenetic inactivation of the human four and a half LIM domains 1 gene in human oral cancer. Int J Oncol. 2013;42(1):141-150.
93 A Sharma, MA Jamil, N Nuesgen, et al. Detailed methylation map of LINE-1 5′-promoter region reveals hypomethylated CpG hotspots associated with tumor tissue specificity. Mol Genet Genomic Med. 2019;7(5):e601.
94 A Sharma, O Kaut, A Pavlova, et al. Skewed X-chromosome inactivation and XIST locus methylation levels do not contribute to the lower prevalence of Parkinson's disease in females. Neurobiol Aging. 2017;57:248.e241-248.e245.
95 A Sharma, H Liu, F Tobar-Tosse, et al. Genome organization in proximity to the BAP1 locus appears to play a pivotal role in a variety of cancers. Cancer Sci. 2020;111(4):1385-1391.
96 WM White, HF Willard, DL Van Dyke, DJ Wolff. The spreading of X inactivation into autosomal material of an x;autosome translocation: evidence for a difference between autosomal and X-chromosomal DNA. Am J Hum Genet. 1998;63(1):20-28.
97 MD Simon, SF Pinter, R Fang, et al. High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation. Nature. 2013;504(7480):465-469.
98 DW Bellott, H Skaletsky, T Pyntikova, et al. Convergent evolution of chicken Z and human X chromosomes by expansion and gene acquisition. Nature. 2010;466(7306):612-616.
99 JL Mueller, H Skaletsky, LG Brown, et al. Independent specialization of the human and mouse X chromosomes for the male germ line. Nat Genet. 2013;45(9):1083-1087.
100 JA Graves. Sex chromosome specialization and degeneration in mammals. Cell. 2006;124(5):901-914.
101 X Wang, KC Douglas, JL Vandeberg, AG Clark, PB Samollow. Chromosome-wide profiling of X-chromosome inactivation and epigenetic states in fetal brain and placenta of the opossum, Monodelphis domestica. Genome Res. 2014;24(1):70-83.
102 AM Livernois, JA Graves, PD Waters. The origin and evolution of vertebrate sex chromosomes and dosage compensation. Heredity (Edinb). 2012;108(1):50-58.
103 M Escamilla-Del-Arenal, ST da Rocha, E Heard. Evolutionary diversity and developmental regulation of X-chromosome inactivation. Hum Genet. 2011;130(2):307-327.
104 J Grant, SK Mahadevaiah, P Khil, et al. Rsx is a metatherian RNA with Xist-like properties in X-chromosome inactivation. Nature. 2012;487(7406):254-258.
105 L Duret, C Chureau, S Samain, J Weissenbach, P Avner. The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene. Science. 2006;312(5780):1653-1655.
106 A Spatz, C Borg, J Feunteun. X-chromosome genetics and human cancer. Nat Rev Cancer. 2004;4(8):617-629.
107 E Yildirim, JE Kirby, DE Brown, et al. Xist RNA is a potent suppressor of hematologic cancer in mice. Cell. 2013;152(4):727-742.
108 HS Leong, K Chen, Y Hu, et al. Epigenetic regulator Smchd1 functions as a tumor suppressor. Cancer Res. 2013;73(5):1591-1599.
109 AV Gendrel, YA Tang, M Suzuki, et al. Epigenetic functions of smchd1 repress gene clusters on the inactive X chromosome and on autosomes. Mol Cell Biol. 2013;33(16):3150-3165.
110 H Royo, H Seitz, E ElInati, AH Peters, MB Stadler, JM Turner. Silencing of X-linked MicroRNAs by meiotic sex chromosome inactivation. PLoS Genet. 2015;11(10):e1005461.
111 JT Lee. Epigenetic regulation by long noncoding RNAs. Science. 2012;338(6113):1435-1439.
112 J Zhao, BK Sun, JA Erwin, JJ Song, JT Lee. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science. 2008;322(5902):750-756.
113 Y Jeon, JT Lee. YY1 tethers Xist RNA to the inactive X nucleation center. Cell. 2011;146(1):119-133.
114 Y Liu, Y Wang, W Li, P Zheng, Y Liu. Activating transcription factor 2 and c-Jun-mediated induction of FoxP3 for experimental therapy of mammary tumor in the mouse. Cancer Res. 2009;69(14):5954-5960.
115 Y Marahrens, B Panning, J Dausman, W Strauss, R Jaenisch. Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev. 1997;11(2):156-166.
116 L Carrel, HF Willard. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature. 2005;434(7031):400-404.
117 R Chaligne, T Popova, MA Mendoza-Parra, et al. The inactive X chromosome is epigenetically unstable and transcriptionally labile in breast cancer. Genome Res. 2015;25(4):488-503.
118 L Richart, ML Picod-Chedotel, M Wassef, et al. XIST loss impairs mammary stem cell differentiation and increases tumorigenicity through mediator hyperactivation. Cell. 2022;185(12):2164-2183. .e2125.
119 J Zawacka-Pankau, G Selivanova. Pharmacological reactivation of p53 as a strategy to treat cancer. J Intern Med. 2015;277(2):248-259.
120 Z Zhou, X Song, B Li, MI Greene. FOXP3 and its partners: structural and biochemical insights into the regulation of FOXP3 activity. Immunol Res. 2008;42(1-3):19-28.
121 H Katoh, P Zheng, Y Liu. Signalling through FOXP3 as an X-linked tumor suppressor. Int J Biochem Cell Biol. 2010;42(11):1784-1787.
122 J Zhao, J Meisel, Y Guo, et al. Evaluation of PD-L1, tumor-infiltrating lymphocytes, and CD8+ and FOXP3+ immune cells in HER2-positive breast cancer treated with neoadjuvant therapies. Breast Cancer Res Treat. 2020;183(3):599-606.
123 J Choi, DR Pease, S Chen, B Zhang, H Phee. P21-activated kinase 2 is essential in maintenance of peripheral Foxp3(+) regulatory T cells. Immunology. 2018;154(2):309-321.
124 Y Liang, Q Lu, W Li, et al. Reactivation of tumour suppressor in breast cancer by enhancer switching through NamiRNA network. Nucleic Acids Res. 2021;49(15):8556-8572.
125 A Kazanets, T Shorstova, K Hilmi, M Marques, M Witcher. Epigenetic silencing of tumor suppressor genes: Paradigms, puzzles, and potential. Biochim Biophys Acta. 2016;1865(2):275-288.
126 R Chaligné, E Heard. X-chromosome inactivation in development and cancer. FEBS Lett. 2014;588(15):2514-2522.
127 X Deng, JB Berletch, DK Nguyen, CM Disteche. X chromosome regulation: diverse patterns in development, tissues and disease. Nat Rev Genet. 2014;15(6):367-378.
128 DT Jones, N J?ger, M Kool, et al. Dissecting the genomic complexity underlying medulloblastoma. Nature. 2012;488(7409):100-105.
129 CS Grasso, Y-M Wu, DR Robinson, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2012;487(7406):239-243.
130 V Faundes, S Goh, R Akilapa, et al. Clinical delineation, sex differences, and genotype–phenotype correlation in pathogenic KDM6A variants causing X-linked Kabuki syndrome type 2. Genet Med. 2021;23(7):1202-1210.
131 A Gropman, CA Samango-Sprouse, Neurocognitive variance and neurological underpinnings of the X and Y chromosomal variations. In: American Journal of Medical Genetics Part C: Seminars in Medical Genetics: 2013: Wiley Online Library; 2013:35-43.
132 D Lederer, B Grisart, MC Digilio, et al. Deletion of KDM6A, a histone demethylase interacting with MLL2, in three patients with Kabuki syndrome. Am J Hum Genet. 2012;90(1):119-124.
133 AM Lindgren, T Hoyos, ME Talkowski, et al. Haploinsufficiency of KDM6A is associated with severe psychomotor retardation, global growth restriction, seizures and cleft palate. Hum Genet. 2013;132(5):537-552.
134 N Miyake, S Mizuno, N Okamoto, et al. KDM 6 A point mutations cause K abuki syndrome. Hum Mutat. 2013;34(1):108-110.
135 R Simensen, R Rogers, J Collins, F Abidi, C Schwartz, RE Stevenson. Short-term memory deficits in carrier females with KDM5C mutations. Genet Couns. 2012;23(1):31-40.
136 LR Jensen, H Bartenschlager, S Rujirabanjerd, et al. A distinctive gene expression fingerprint in mentally retarded male patients reflects disease-causing defects in the histone demethylase KDM5C. Pathogenetics. 2010;3(1):2.
137 JI Grill, FT Kolligs. DRO1/CCDC80: a novel tumor suppressor of colorectal carcinogenesis. Curr Colorectal Cancer Rep. 2015;11:200-208.
138 D Umlauf, J Bonnet, F Waharte, et al. The human TREX-2 complex is stably associated with the nuclear pore basket. J Cell Sci. 2013;126(12):2656-2667. Pt.
139 V Bhatia, SI Barroso, ML García-Rubio, E Tumini, E Herrera-Moyano, AJN Aguilera. BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2. Nature. 2014;511(7509):362-365.
140 M LLeonart, F Vidal, D Gallardo, et al. New p53 related genes in human tumors: significant downregulation in colon and lung carcinomas. Oncol Rep. 2006;16(3):603-608.
141 A Grohmann, K Tanneberger, A Alzner, J Schneikert, J Behrens. AMER1 regulates the distribution of the tumor suppressor APC between microtubules and the plasma membrane. J Cell Sci. 2007;120(21):3738-3747.
142 K Chen, A Gorgen, A Ding, et al. Dual-specificity phosphatase 9 regulates cellular proliferation and predicts recurrence after surgery in hepatocellular carcinoma. Hepatol Commun. 2021;5(7):1310-1328.
143 S Middendorp, AE Zijlstra, R Kersseboom, GM Dingjan, H Jumaa, RWJB Hendriks. Tumor suppressor function of Bruton tyrosine kinase is independent of its catalytic activity. Blood. 2005;105(1):259-265.
144 K Zhu, Q Liu, Y Zhou, et al. Oncogenes and tumor suppressor genes: comparative genomics and network perspectives. Bmc Genomics [Electronic Resource]. 2015;16(7):1-11.
145 H Lodish, A Berk, SL Zipursky, P Matsudaira, D Baltimore, J Darnell, Molecular Cell Biology. 4th edition. 2000:9.
146 F Lo-Coco, M Breccia, N Noguera, WH Miller Jr. Diagnostic value of detecting fusion proteins derived from chromosome translocations in acute leukaemia. Best Pract Res Clin Haematol. 2003;16(4):653-670.
147 R Osborne, V Leech. Polymerase chain reaction allelotyping of human ovarian cancer. Br J Cancer. 1994;69(3):429-438.
148 M Kavianpour, A Ahmadzadeh, S Shahrabi, N Saki. Significance of oncogenes and tumor suppressor genes in AML prognosis. Tumour Biol. 2016;37:10041-10052.
149 TB Dansen, BMT Burgering. Unravelling the tumor-suppressive functions of FOXO proteins. Trends Cell Biol. 2008;18(9):421-429.
150 R Rattan, K Narita, J Chien, et al. TCEAL7, a putative tumor suppressor gene, negatively regulates NF-κB pathway. Oncogene. 2010;29(9):1362-1373.
151 K-K Wong, DI Izaguirre, S-Y Kwan, et al. Poor survival with wild-type TP53 ovarian cancer? Gynecol Oncol. 2013;130(3):565-569.
152 TC Voss, GL Hager. Dynamic regulation of transcriptional states by chromatin and transcription factors. Nat Rev Genet. 2014;15:69-81.
153 TI Lee, RA Young. Transcriptional regulation and its misregulation in disease. Cell. 2013;152(6):1237-1251.
154 P Carlsson, M Mahlapuu. Forkhead transcription factors: key players in development and metabolism. Dev Biol. 2002;250(1):1-23.
155 CM Hernandez-Garcia, JJ Finer. Identification and validation of promoters and cis-acting regulatory elements. Plant Sci. 2014;217-218:109-119.
156 K Gupta, D Sari-Ak, M Haffke, S Trowitzsch, I Berger. Zooming in on transcription preinitiation. J Mol Biol. 2016;428(12):2581-2591.
157 JT Kadonaga. Perspectives on the RNA polymerase II core promoter. Wiley Interdiscip Rev Dev Biol. 2012;1(1):40-51.
158 B Manzano-Winkler, CD Novina, AL Roy. TFII is required for transcription of the naturally TATA-less but initiator-containing Vβ promoter (?). J Biol Chem. 1996;271(20):12076-12081.
159 PJ Mitchell, R Tjian. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science. 1989;245(4916):371-378.
160 JA Hellyer, H Stehr, M Das, et al. Impact of KEAP1/NFE2L2/CUL3 mutations on duration of response to EGFR tyrosine kinase inhibitors in EGFR mutated non-small cell lung cancer. Lung Cancer. 2019;134:42-45.
161 R Frank, M Scheffler, S Merkelbach-Bruse, et al. Clinical and pathological characteristics of KEAP1-and NFE2L2-mutated non–small cell lung carcinoma (NSCLC). Clin Cancer Res. 2018;24(13):3087-3096.
162 LD Goldstein, J Lee, F Gnad, et al. Recurrent loss of NFE2L2 exon 2 is a mechanism for Nrf2 pathway activation in human cancers. Cell Rep. 2016;16(10):2605-2617.
163 B Wang, H Guo, H Yu, Y Chen, H Xu, G Zhao. The role of the transcription factor EGR1 in cancer. Front Oncol. 2021;11:642547.
164 T-T Li, M-R Liu, D-S Pei. Friend or foe, the role of EGR-1 in cancer. Med Oncol. 2020;37(1):7.
165 L Wang, A Shilatifard. UTX mutations in human cancer. Cancer Cell. 2019;35(2):168-176.
166 M Gozdecka, E Meduri, M Mazan, et al. UTX-mediated enhancer and chromatin remodeling suppresses myeloid leukemogenesis through noncatalytic inverse regulation of ETS and GATA programs. Nat Genet. 2018;50(6):883-894.
167 J Andricovich, S Perkail, Y Kai, N Casasanta, W Peng, A Tzatsos. Loss of KDM6A Activates Super-Enhancers to Induce Gender-Specific Squamous-like Pancreatic Cancer and Confers Sensitivity to BET Inhibitors. Cancer Cell. 2018;33(3):512-526. .e518.
168 KB Shpargel, J Starmer, C Wang, K Ge, T Magnuson. UTX-guided neural crest function underlies craniofacial features of Kabuki syndrome. Proc Natl Acad Sci USA. 2017;114(43):E9046-E9055.
169 JH Kim, J Hwang, JH Jung, HJ Lee, DY Lee, SH Kim. Molecular networks of FOXP family: dual biologic functions, interplay with other molecules and clinical implications in cancer progression. Mol Cancer. 2019;18(1):180.
170 F Wang, N Zhao, G Gao, et al. Prognostic value of TP53 co-mutation status combined with EGFR mutation in patients with lung adenocarcinoma. J Cancer Res Clin Oncol. 2020;146(11):2851-2859.
171 A Kuzmichev, K Nishioka, H Erdjument-Bromage, P Tempst, D Reinberg. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 2002;16(22):2893-2905.
172 HJ Li, PN Yu, KY Huang, et al. NKX6.1 functions as a metastatic suppressor through epigenetic regulation of the epithelial-mesenchymal transition. Oncogene. 2016;35(17):2266-2278.
173 F Caramia, TP Speed, H Shen, Y Haupt, S Haupt. Establishing the Link between X-Chromosome Aberrations and TP53 Status, with Breast Cancer Patient Outcomes. Cells. 2023;12(18):2245.
174 O Shoshani, B Bakker, L de Haan, et al. Transient genomic instability drives tumorigenesis through accelerated clonal evolution. Genes Dev. 2021;35(15-16):1093-1108.
175 V Greger, E Passarge, W H?pping, E Messmer, B Horsthemke. Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum Genet. 1989;83:155-158.
176 A Merlo, JG Herman, L Mao, et al. 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med. 1995;1(7):686-692.
177 JG Herman, A Merlo, L Mao, et al. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 1995;55(20):4525-4530.
178 M Gonzalez-Zulueta, CM Bender, AS Yang, et al. Methylation of the 5′ CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res. 1995;55(20):4531-4535.
179 M Esteller, PG Corn, SB Baylin, JG Herman. A gene hypermethylation profile of human cancer. Cancer Res. 2001;61(8):3225-3229.
180 M Esteller. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene. 2002;21(35):5427-5440.
181 SJ Clark, PL Molloy. Early insights into cancer epigenetics: Gene promoter hypermethylation emerges as a potential biomarker for cancer detection. Cancer Res. 2022;82(8):1461-1463.
182 MJ Pajares, E Alemany-Cosme, S Go?i, E Bandres, C Palanca-Ballester, J Sandoval. Epigenetic regulation of microRNAs in cancer: shortening the distance from bench to bedside. Int J Mol Sci. 2021;22(14):7350.
183 NE Kushlinskii, DO Utkin, VI Loginov, et al. Clinical significance of methylation of a group of miRNA genes in patients with ovarian cancer. Klin Lab Diagn. 2020;65(5):321-327.
184 E Filippova, V Loginov, A Burdennyi, et al. Hypermethylated genes of MicroRNA in ovarian carcinoma: metastasis prediction marker systems. Bull Exp Biol Med. 2019;167(1):79-83.
185 A Lujambio. CpG island hypermethylation of tumor suppressor microRNAs in human cancer. Cell Cycle. 2007;6(12):1454-1458.
186 OA Sukocheva, E Lukina, M Friedemann, M Menschikowski, A Hagelgans, G Aliev. The crucial role of epigenetic regulation in breast cancer anti-estrogen resistance: Current findings and future perspectives. Semin Cancer Biol. Elsevier; 2022:35-59.
187 L Lopez-Serra, E Ballestar, MF Fraga, M Alaminos, F Setien, M Esteller. A profile of methyl-CpG binding domain protein occupancy of hypermethylated promoter CpG islands of tumor suppressor genes in human cancer. Cancer Res. 2006;66(17):8342-8346.
188 J Chien, J Staub, R Avula, et al. Epigenetic silencing of TCEAL7 (Bex4) in ovarian cancer. Oncogene. 2005;24(32):5089-5100.
189 MF Berger, ER Mardis. The emerging clinical relevance of genomics in cancer medicine. Nat Rev Clin Oncol. 2018;15(6):353-365.
190 DD Shi, JA Guo, HI Hoffman, et al. Therapeutic avenues for cancer neuroscience: translational frontiers and clinical opportunities. Lancet Oncol. 2022;23(2):e62-e74.
191 I Martinez-Reyes, NS Chandel. Cancer metabolism: looking forward. Nat Rev Cancer. 2021;21(10):669-680.
192 F Supek, B Minana, J Valcarcel, T Gabaldon, B Lehner. Synonymous mutations frequently act as driver mutations in human cancers. Cell. 2014;156(6):1324-1335.
193 JE Rubnitz, B Gibson, FO Smith. Acute myeloid leukemia. Pediatr Clin N Am. 2008;55(1):21-51.
194 T Sjoblom, S Jones, LD Wood, et al. The consensus coding sequences of human breast and colorectal cancers. Science. 2006;314(5797):268-274.
195 LD Wood, DW Parsons, S Jones, et al. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318(5853):1108-1113.
196 SP Shah, RD Morin, J Khattra, et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature. 2009;461(7265):809-813.
197 Q-W Zhang, L Liu, C-Y Gong, et al. Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS One. 2012;7(12):e50946.
198 DA Landau, E Tausch, AN Taylor-Weiner, et al. Mutations driving CLL and their evolution in progression and relapse. Nature. 2015;526(7574):525-530.
199 J Liu, C He, C Xing, Y Yuan. Nucleotide excision repair related gene polymorphisms and genetic susceptibility, chemotherapeutic sensitivity and prognosis of gastric cancer. Mutat Res. 2014;765:11-21.
200 C He, H Tu, L Sun, et al. SNP interactions of Helicobacter pylori-related host genes PGC, PTPN11, IL1B, and TLR4 in susceptibility to gastric carcinogenesis. Oncotarget. 2015;6(22):19017-19026.
201 MA Schirmer, CM Lüske, S Roppel, et al. Relevance of Sp binding site polymorphism in WWOX for treatment outcome in pancreatic cancer. J Natl Cancer Inst. 2016;108(5):djv387.
202 C He, Q Xu, H Tu, et al. Polymorphic rs9471643 and rs6458238 upregulate PGC transcription and protein expression in overdominant or dominant models. Mol Carcinog. 2016;55(5):586-599.
203 H Wu, K Zhang, P Gong, et al. A novel functional TagSNP Rs7560488 in the DNMT3A1 promoter is associated with susceptibility to gastric cancer by modulating promoter activity. PLoS One. 2014;9(3):e92911.
204 M Xu, Y Gao, T Yu, et al. Functional promoter rs2295080 T>G variant in MTOR gene is associated with risk of colorectal cancer in a Chinese population. Biomed Pharmacother. 2015;70:28-32.
205 H Fan, D Liu, X Qiu, et al. A functional polymorphism in the DNA methyltransferase-3A promoter modifies the susceptibility in gastric cancer but not in esophageal carcinoma. BMC Med. 2010;8:12.
206 L Yang, X Yang, W Ji, et al. Effects of a functional variant c. 353T>C in snai1 on risk of two contextual diseases. Chronic obstructive pulmonary disease and lung cancer. Am J Respir Crit Care Med. 2014;189(2):139-148.
207 W Fang, F Qiu, L Zhang, et al. The functional polymorphism of NBS1 p. Glu185Gln is associated with an increased risk of lung cancer in Chinese populations: Case–control and a meta-analysis. Mutat Res. 2014;770:61-68.
208 P Griseri, C Bourcier, C Hieblot, et al. A synonymous polymorphism of the Tristetraprolin (TTP) gene, an AU-rich mRNA-binding protein, affects translation efficiency and response to Herceptin treatment in breast cancer patients. Hum Mol Genet. 2011;20(23):4556-4568.
209 HY Xiong, B Alipanahi, LJ Lee, et al. The human splicing code reveals new insights into the genetic determinants of disease. Science. 2015;347(6218):1254806.
210 H Li, W Gan, L Lu, et al. A genome-wide association study identifies GRK5 and RASGRP1 as type 2 diabetes loci in Chinese Hans. Diabetes. 2013;62(1):291-298.
211 C Pagenstecher, M Wehner, W Friedl, et al. Aberrant splicing in MLH1 and MSH2 due to exonic and intronic variants. Hum Genet. 2006;119:9-22.
212 Q Xu, Q Dong, C He, et al. A new polymorphism biomarker rs629367 associated with increased risk and poor survival of gastric cancer in Chinese by up-regulated miRNA-let-7a expression. PLoS One. 2014;9(4):e95249.
213 Q Xu, M-Y Chen, C-Y He, L-P Sun, Y Yuan. Promoter polymorphisms in trefoil factor 2 and trefoil factor 3 genes and susceptibility to gastric cancer and atrophic gastritis among Chinese population. Gene. 2013;529(1):104-112.
214 NR Dunna, SM Naushad, S Vuree, et al. Association of thymidylate synthase 5'-UTR 28 bp tandem repeat and serine hydroxymethyltransfarase C1420T polymorphisms with susceptibility to acute leukemia. Asian Pac J Cancer Prev. 2014;15(4):1719-1723.
215 X-F Chen, D-L Zhu, M Yang, et al. An osteoporosis risk SNP at 1p36. 12 acts as an allele-specific enhancer to modulate LINC00339 expression via long-range loop formation. Am J Hum Genet. 2018;102(5):776-793.
216 N Cheng, C Bi, Y Shi, et al. Effect predictor of driver synonymous mutations based on multi-feature fusion and iterative feature representation learning. IEEE J Biomed Health Inform. 2024;28(2):1144-1151.
217 Z Zeng, Y Bromberg. Inferring potential cancer driving synonymous variants. Genes (Basel). 2022;13(5):778.
218 N Cheng, M Li, L Zhao, et al. Comparison and integration of computational methods for deleterious synonymous mutation prediction. Brief Bioinform. 2020;21(3):970-981.
219 I Bianchi, A Lleo, ME Gershwin, P Invernizzi. The X chromosome and immune associated genes. J Autoimmun. 2012;38(2-3):J187-J192.
220 B Lv, Y Wang, D Ma, et al. Immunotherapy: reshape the tumor immune microenvironment. Front Immunol. 2022;13:844142.
221 X Zhao, R Zhao, J Wen, et al. Bioinformatics-based screening and analysis of the key genes involved in the influence of antiangiogenesis on myeloid-derived suppressor cells and their effects on the immune microenvironment. Med Oncol. 2024;41(5):96.
222 J Wang, Y Wang, L Wan, et al. Identification of lactate regulation pattern on tumor immune infiltration, therapy response, and DNA methylation in diffuse large B-cell lymphoma. Front Immunol. 2023;14:1230017.
223 H Schurz, M Salie, G Tromp, EG Hoal, CJ Kinnear, M Moller. The X chromosome and sex-specific effects in infectious disease susceptibility. Hum Genomics. 2019;13(1):2.
224 MT Dorak, E Karpuzoglu. Gender differences in cancer susceptibility: an inadequately addressed issue. Front Genet. 2012;3:268.
225 RL Siegel, KD Miller, SA Fedewa, et al. Colorectal cancer statistics, 2017. CA Cancer J Clin. 2017;67(3):177-193.
226 EA Khramtsova, LK Davis, BE Stranger. The role of sex in the genomics of human complex traits. Nat Rev Genet. 2019;20(3):173-190.
227 I Ben-Batalla, ME Vargas-Delgado, G von Amsberg, M Janning, S Loges. Influence of androgens on immunity to self and foreign: effects on immunity and cancer. Front Immunol. 2020;11:1184.
228 A Irelli, MM Sirufo, C D'Ugo, L Ginaldi, M De Martinis. Sex and gender influences on cancer immunotherapy response. Biomedicines. 2020;8(7):232.
229 S Hutter, S Bolin, H Weishaupt, FJ Swartling. Modeling and targeting MYC genes in childhood brain tumors. Genes. 2017;8(4):107.
230 MA Collins, F Bednar, Y Zhang, et al. Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. J Clin Invest. 2012;122(2):639-653.
231 H Ying, AC Kimmelman, CA Lyssiotis, et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell. 2012;149(3):656-670.
232 MA Collins, J-C Brisset, Y Zhang, et al. Metastatic pancreatic cancer is dependent on oncogenic Kras in mice. PLoS One. 2012;7(12):e49707.
233 P Nenclares, K Harrington. The biology of cancer. Medicine (Baltimore). 2020;48(2):67-72.
234 K Koera, K Nakamura, K Nakao, et al. K-ras is essential for the development of the mouse embryo. Oncogene. 1997;15(10):1151-1159.
235 SG O'Brien, F Guilhot, RA Larson, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2003;348(11):994-1004.
236 JM Llovet, S Ricci, V Mazzaferro, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378-390.
237 X Yu, A Vazquez, AJ Levine, DR Carpizo. Allele-specific p53 mutant reactivation. Cancer Cell. 2012;21(5):614-625.
238 FM Boeckler, AC Joerger, G Jaggi, TJ Rutherford, DB Veprintsev, AR Fersht. Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. Proc Natl Acad Sci USA. 2008;105(30):10360-10365.
239 V Raghavan, M Agrahari, DK Gowda. Virtual screening of p53 mutants reveals Y220S as an additional rescue drug target for PhiKan083 with higher binding characteristics. Comput Biol Chem. 2019;80:398-408.
240 Q Zhang, VJN Bykov, KG Wiman, J Zawacka-Pankau. APR-246 reactivates mutant p53 by targeting cysteines 124 and 277. Cell Death Dis. 2018;9(5):439.
241 S Lehmann, VJ Bykov, D Ali, et al. Targeting p53 in vivo: a first-in-human study with p53-targeting compound APR-246 in refractory hematologic malignancies and prostate cancer. J Clin Oncol. 2012;30(29):3633-3639.
242 S Deneberg, H Cherif, V Lazarevic, et al. An open-label phase I dose-finding study of APR-246 in hematological malignancies. Blood Cancer J. 2016;6(7):e447.
243 DA Sallman, AE DeZern, G Garcia-Manero, et al. Eprenetapopt (APR-246) and azacitidine in TP53-mutant myelodysplastic syndromes. J Clin Oncol. 2021;39(14):1584-1594.
244 JM Lambert, P Gorzov, DB Veprintsev, et al. PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell. 2009;15(5):376-388.
245 H Yan, L Zhang, R Li. Identification of m6A suppressor EIF4A3 as a novel cancer prognostic and immunotherapy biomarker through bladder cancer clinical data validation and pan-cancer analysis. Sci Rep. 2023;13(1):16457.
246 S Zhang, J Gu, LL Shi, et al. A pan-cancer analysis of anti-proliferative protein family genes for therapeutic targets in cancer. Sci Rep. 2023;13(1):21607.
247 DC Yang, JF Head, RL Elliott. Gene targets of antisense therapies in breast cancer. Expert Opin Ther Targets. 2002;6(3):375-385.
248 GN Hortobagyi, NT Ueno, W Xia, et al. Cationic liposome-mediated E1A gene transfer to human breast and ovarian cancer cells and its biologic effects: a phase I clinical trial. J Clin Oncol. 2001;19(14):3422-3433.
249 GM Nitulescu, D Margina, P Juzenas, et al. Akt inhibitors in cancer treatment: The long journey from drug discovery to clinical use (Review). Int J Oncol. 2016;48(3):869-885.
250 AA Emran, J Nsengimana, G Punnia-Moorthy, et al. Study of the female sex survival advantage in melanoma—a focus on X-linked epigenetic regulators and immune responses in two cohorts. Cancers (Basel). 2020;12(8):2082.
251 L Sun, R Zhai, L Zhang, S Zhao. MicroRNA-149 suppresses the proliferation and increases the sensitivity of ovarian cancer cells to cisplatin by targeting X-linked inhibitor of apoptosis. Oncol Lett. 2018;15(5):7328-7334.
252 M Vacca, F Della Ragione, F Scalabrì, M D'Esposito. X inactivation and reactivation in X-linked diseases. Semin Cell Dev Biol. 2016;56:78-87.
253 A Dunford, DM Weinstock, V Savova, et al. Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias. Nat Genet. 2017;49(1):10-16.
254 PC Cheng, JA Gosewehr, TM Kim, et al. Potential role of the inactivated X chromosome in ovarian epithelial tumor development. J Natl Cancer Inst. 1996;88(8):510-518.
255 M Redpath. Unraveling the Role of the X Chromosome in Cancer: Characterization of FOXP3 Isoforms and PR70 in Cutaneous Melanoma. McGill University (Canada); 2019.
256 BP Balaton, O Fornes, WW Wasserman, CJ Brown. Cross-species examination of X-chromosome inactivation highlights domains of escape from silencing. Epigenet Chromatin. 2021;14(1):12.
257 MF Fernández, I Reina-Pérez, JM Astorga, A Rodríguez-Carrillo, J Plaza-Díaz, L Fontana. Breast cancer and its relationship with the microbiota. Int J Environ Res Public Health. 2018;15(8):1747.
258 P Buiga, A Elson, L Tabernero, J-M Schwartz. Regulation of dual specificity phosphatases in breast cancer during initial treatment with Herceptin: A Boolean model analysis. BMC Syst Biol. 2018;12(1):11.
259 F Arabpour, A Shafizad, M Rahimzadeh, M Norouzan, N Naderi. FoxP3 gene polymorphism is associated with breast cancer in Iranian patients. Exp Oncol. 2018;40(4):309-314.
260 V Kajabova, B Smolkova, I Zmetakova, et al. RASSF1A promoter methylation levels positively correlate with estrogen receptor expression in breast cancer patients. Transl Oncol. 2013;6(3):297-304.
261 R Guerrero-Preston, C Michailidi, L Marchionni, et al. Key tumor suppressor genes inactivated by “greater promoter” methylation and somatic mutations in head and neck cancer. Epigenetics. 2014;9(7):1031-1046.
262 L Han, PDW Witmer, E Casey, D Valle, S Sukumar. DNA methylation regulates MicroRNA expression. Cancer Biol Ther. 2007;6(8):1290-1294.
263 TC Bestor, PG Steinhoff, VL Bestor. Doing Fieldwork in Japan. University of Hawaii Press; 2003.
264 CF Mugal, PF Arndt, L Holm, H Ellegren. Genetics: Evolutionary consequences of DNA methylation on the GC content in vertebrate genomes. G3. 2015;5(3):441-447.
265 K Jabbari, S Cacciò, JPP De Barros, J Desgrès, GJ Bernardi. Evolutionary changes in CpG and methylation levels in the genome of vertebrates. Gene. 1997;205(1-2):109-118.
266 J Karlow. Cancer Epigenome Reprogramming. Washington University; 2021.
267 MC Maiuri, E Tasdemir, A Criollo, et al. Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ. 2009;16(1):87-93.
268 H Lu, L Tran, Y Park, et al. Reciprocal regulation of DUSP9 and DUSP16 expression by HIF1 controls ERK and p38 MAP kinase activity and mediates chemotherapy-induced breast cancer stem cell enrichment. Cancer Res. 2018;78(15):4191-4202.
269 M Zhao, P Kim, R Mitra, J Zhao, Z Zhao. TSGene 2.0: an updated literature-based knowledgebase for tumor suppressor genes. Nucleic Acids Res. 2016;44(D1):D1023-D1031.
270 T Davoli, AW Xu, KE Mengwasser, et al. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell. 2013;155(4):948-962.
271 KO Wrzeszczynski, V Varadan, J Byrnes, et al. Identification of tumor suppressors and oncogenes from genomic and epigenetic features in ovarian cancer. PLoS One. 2011;6(12):e28503.
272 W Sun, L Qiao, Q Liu, et al. Anticancer activity of the PR domain of tumor suppressor RIZ1. Int J Med Sci. 2011;8(2):161.
273 D Pinkel, R Segraves, D Sudar, et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet. 1998;20(2):207-211.
274 C Collins, JM Rommens, D Kowbel, et al. Positional cloning of ZNF 217 and NABC 1: genes amplified at 20q13. 2 and overexpressed in breast carcinoma. Proc Natl Acad Sci USA. 1998;95(15):8703-8708.
275 DG Albertson, B Ylstra, R Segraves, et al. Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nat Genet. 2000;25(2):144-146.
276 DL Tait, PS Obermiller, AR Hatmaker, S Redlin-Frazier, JT Holt. Ovarian cancer BRCA1 gene therapy: Phase I and II trial differences in immune response and vector stability. Clin Cancer Res. 1999;5(7):1708-1714.
277 A Hazafa, M Mumtaz, MF Farooq, et al. CRISPR/Cas9: A powerful genome editing technique for the treatment of cancer cells with present challenges and future directions. Life Sci. 2020;263:118525.
278 S Chen, NE Sanjana, K Zheng, et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell. 2015;160(6):1246-1260.
279 FJ Sánchez-Rivera, T Papagiannakopoulos, R Romero, et al. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature. 2014;516(7531):428-431.
PDF

Accesses

Citations

Detail

Sections
Recommended

/