CD44 and its implication in neoplastic diseases

Yiming Xu1, Ziyi Bai1, Tianxia Lan1, Chenying Fu2(), Ping Cheng3()

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (6) : e554. DOI: 10.1002/mco2.554
REVIEW

CD44 and its implication in neoplastic diseases

  • Yiming Xu1, Ziyi Bai1, Tianxia Lan1, Chenying Fu2(), Ping Cheng3()
Author information +
History +

Abstract

CD44, a nonkinase single span transmembrane glycoprotein, is a major cell surface receptor for many other extracellular matrix components as well as classic markers of cancer stem cells and immune cells. Through alternative splicing of CD44 gene, CD44 is divided into two isoforms, the standard isoform of CD44 (CD44s) and the variant isoform of CD44 (CD44v). Different isoforms of CD44 participate in regulating various signaling pathways, modulating cancer proliferation, invasion, metastasis, and drug resistance, with its aberrant expression and dysregulation contributing to tumor initiation and progression. However, CD44s and CD44v play overlapping or contradictory roles in tumor initiation and progression, which is not fully understood. Herein, we discuss the present understanding of the functional and structural roles of CD44 in the pathogenic mechanism of multiple cancers. The regulation functions of CD44 in cancers-associated signaling pathways is summarized. Moreover, we provide an overview of the anticancer therapeutic strategies that targeting CD44 and preclinical and clinical trials evaluating the pharmacokinetics, efficacy, and drug-related toxicity about CD44-targeted therapies. This review provides up-to-date information about the roles of CD44 in neoplastic diseases, which may open new perspectives in the field of cancer treatment through targeting CD44.

Keywords

CD44 / neoplastic diseases / signaling pathways / therapeutic strategies

Cite this article

Download citation ▾
Yiming Xu, Ziyi Bai, Tianxia Lan, Chenying Fu, Ping Cheng. CD44 and its implication in neoplastic diseases. MedComm, 2024, 5(6): e554 https://doi.org/10.1002/mco2.554

References

1 MM Gomari, M Farsimadan, N Rostami, et al. CD44 polymorphisms and its variants, as an inconsistent marker in cancer investigations. Mutat Res Rev Mutat Res. 2021;787:108374.
2 H Ponta, D Wainwright, P Herrlich. The CD44 protein family. Int J Biochem Cell Biol. 1998;30(3):299-305.
3 S Liu, Z Liu, A Shang, et al. CD44 is a potential immunotherapeutic target and affects macrophage infiltration leading to poor prognosis. Sci Rep. 2023;13(1):9657.
4 RC Gupta, R Lall, A Srivastava, A Sinha. Hyaluronic acid: molecular mechanisms and therapeutic trajectory. Front Vet Sci. 2019;6:192.
5 S Chen, M Zhang, J Li, et al. β-catenin-controlled tubular cell-derived exosomes play a key role in fibroblast activation via the OPN-CD44 axis. J Extracell Vesicles. 2022;11(3):e12203.
6 Q Chu, H Huang, T Huang, et al. Extracellular serglycin upregulates the CD44 receptor in an autocrine manner to maintain self-renewal in nasopharyngeal carcinoma cells by reciprocally activating the MAPK/β-catenin axis. Cell Death Dis. 2016;7(11):e2456.
7 S Amorim, CA Reis, RL Reis, RA Pires. Extracellular matrix mimics using hyaluronan-based biomaterials. Trends Biotechnol. 2021;39(1):90-104.
8 G-ES Chaudhry, A Akim, M Naveed Zafar, N Safdar, YY Sung, TST Muhammad. Understanding hyaluronan receptor (CD44) interaction, HA-CD44 activated potential targets in cancer therapeutics. Adv Pharm Bull. 2021;11(3):426-438.
9 C Chen, S Zhao, A Karnad, JW Freeman. The biology and role of CD44 in cancer progression: therapeutic implications. J Hematol Oncol. 2018;11(1):1-23.
10 C Yang, Y Sheng, X Shi, et al. CD44/HA signaling mediates acquired resistance to a PI3Kα inhibitor. Cell Death Dis. 2020;11(10):831.
11 DB Farahani, H Akrami, B Moradi, K Mehdizadeh, MR Fattahi. The effect of hsa-miR-451b knockdown on biological functions of gastric cancer stem-like cells. Biochem Genet. 2021;59(5):1203-1224.
12 L Li, X Hao, J Qin, et al. Antibody against CD44s inhibits pancreatic tumor initiation and postradiation recurrence in mice. Gastroenterology. 2014;146(4):1108-1118.
13 RL Brown, LM Reinke, MS Damerow, et al. CD44 splice isoform switching in human and mouse epithelium is essential for epithelial-mesenchymal transition and breast cancer progression. J Clin Invest. 2011;121(3):1064-1074.
14 M Todaro, M Gaggianesi, V Catalano, et al. CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell. 2014;14(3):342-356.
15 SJ Wang, VB Wreesmann, LYW Bourguignon. Association of CD44 V3-containing isoforms with tumor cell growth, migration, matrix metalloproteinase expression, and lymph node metastasis in head and neck cancer. Head Neck. 2007;29(6):550-558.
16 C Kolliopoulos, C-Y Lin, C-H Heldin, A Moustakas, P Heldin. Has2 natural antisense RNA and Hmga2 promote Has2 expression during TGFβ-induced EMT in breast cancer. Matrix Biol. 2019;80:29-45.
17 C Huang, C Yoon, X-H Zhou, et al. ERK1/2-Nanog signaling pathway enhances CD44(+) cancer stem-like cell phenotypes and epithelial-to-mesenchymal transition in head and neck squamous cell carcinomas. Cell Death Dis. 2020;11(4):266.
18 H Ji, L Kong, Y Wang, et al. CD44 expression is correlated with osteosarcoma cell progression and immune infiltration and affects the Wnt/β-catenin signaling pathway. J Bone Oncol. 2023;41:100487.
19 SMS Ahmad, H Nazar, MM Rahman, RS Rusyniak, A Ouhtit. ITGB1BP1, a novel transcriptional target of cd44-downstream signaling promoting cancer cell invasion. Breast Cancer (Dove Med Press). 2023;15:373-380.
20 D Li, X Wang, K Han, et al. Hypoxia and CD44 receptors dual-targeted nano-micelles with AGT-inhibitory activity for the targeting delivery of carmustine. Int J Biol Macromol. 2023;246:125657.
21 K-L Chen, D Li, T-X Lu, S-W Chang. Structural characterization of the CD44 stem region for standard and cancer-associated isoforms. Int J Mol Sci. 2020;21(1):336.
22 E Karousou, S Misra, S Ghatak, et al. Roles and targeting of the HAS/hyaluronan/CD44 molecular system in cancer. Matrix Biol. 2017;59:3-22.
23 M Hassn Mesrati, SE Syafruddin, MA Mohtar, A Syahir. CD44: a multifunctional mediator of cancer progression. Biomolecules. 2021;11(12):1850.
24 C T?lg, M Hofmann, P Herrlich, H Ponta. Splicing choice from ten variant exons establishes CD44 variability. Nucleic Acids Res. 1993;21(5):1225-1229.
25 MN Mishra, V Chandavarkar, R Sharma, D Bhargava. Structure, function and role of CD44 in neoplasia. J Oral Maxillofac Pathol. 2019;23(2):267-272.
26 RJ Sneath, DC Mangham. The normal structure and function of CD44 and its role in neoplasia. Mol Pathol. 1998;51(4):191-200.
27 BR Muys, DG Anastasakis, D Claypool, et al. The p53-induced RNA-binding protein ZMAT3 is a splicing regulator that inhibits the splicing of oncogenic CD44 variants in colorectal carcinoma. Genes Dev. 2021;35(1-2):102-116.
28 KL Bennett, DG Jackson, JC Simon, et al. CD44 isoforms containing exon V3 are responsible for the presentation of heparin-binding growth factor. J Cell Biol. 1995;128(4):687-698.
29 D Basuli, L Tesfay, Z Deng, et al. Iron addiction: a novel therapeutic target in ovarian cancer. Oncogene. 2017;36(29):4089-4099.
30 S Müller, F Sindikubwabo, T Ca?eque, et al. CD44 regulates epigenetic plasticity by mediating iron endocytosis. Nat Chem. 2020;12(10):929-938.
31 Q Guo, C Yang, F Gao. The state of CD44 activation in cancer progression and therapeutic targeting. FEBS J. 2022;289(24):7970-7986.
32 P Piselli, S Vendetti, D Vismara, et al. Different expression of CD44, ICAM-1, and HSP60 on primary tumor and metastases of a human pancreatic carcinoma growing in scid mice. Anticancer Res. 2000;20(2A):825-831.
33 F-L Zhang, J-L Cao, H-Y Xie, et al. Cancer-associated MORC2-mutant M276I regulates an hnRNPM-mediated CD44 splicing switch to promote invasion and metastasis in triple-negative breast cancer. Cancer Res. 2018;78(20):5780-5792.
34 CB da Cunha, DD Klumpers, ST Koshy, et al. CD44 alternative splicing in gastric cancer cells is regulated by culture dimensionality and matrix stiffness. Biomaterials. 2016;98:152-162.
35 JM Espejo-Román, B Rubio-Ruiz, M Chayah-Ghaddab, et al. N-aryltetrahydroisoquinoline derivatives as HA-CD44 interaction inhibitors: design, synthesis, computational studies, and antitumor effect. Eur J Med Chem. 2023;258:115570.
36 L Chen, X Huan, G-H Xiao, et al. Osteopontin and its downstream carcinogenic molecules: regulatory mechanisms and prognostic value in cancer progression. Neoplasma. 2022;69(6):1253-1269.
37 S Liang, Y Duan, Z Xing, et al. Inhibition of cell proliferation and migration by chondroitin sulfate-g-polyethylenimine-mediated miR-34a delivery. Colloids Surf B Biointerfaces. 2015;136:577-584.
38 I Morath, TN Hartmann, V Orian-Rousseau. CD44: More than a mere stem cell marker. Int J Biochem Cell Biol. 2016;81(Pt A):166-173.
39 G Wu, X Song, J Liu, et al. Expression of CD44 and the survival in glioma: a meta-analysis. Biosci Rep. 2020;40(4):BSR20200520.
40 C Kolliopoulos, MM Ali, C Castillejo-Lopez, C-H Heldin, P Heldin. CD44 depletion in glioblastoma cells suppresses growth and stemness and induces senescence. Cancers (Basel). 2022;14(15):3747.
41 H Zhang, H Cao, H Luo, et al. RUNX1/CD44 axis regulates the proliferation, migration, and immunotherapy of gliomas: a single-cell sequencing analysis. Front Immunol. 2023;14:1086280.
42 D Kamamoto, I Saga, K Ohara, K Yoshida, H Sasaki. Association between CD133, CD44, and nestin expression and prognostic factors in high-grade meningioma. World Neurosurg. 2018; S1878-8750 (18) 32890-0.
43 HZ Li, HD Gong, C Wang, JK Li. The role of osteopontin and its receptor in meningioma development and progression. J Biol Regul Homeost Agents. 2018;32(1):69-74.
44 C Wang, Z Wang, C Chen, et al. A low MW inhibitor of CD44 dimerization for the treatment of glioblastoma. Br J Pharmacol. 2020;177(13):3009-3023.
45 D Loreth, M Schuette, J Zinke, et al. CD74 and CD44 expression on CTCs in cancer patients with brain metastasis. Int J Mol Sci. 2021;22(13):6993.
46 Q Huang, L Liu, D Xiao, et al. CD44+ lung cancer stem cell-derived pericyte-like cells cause brain metastases through GPR124-enhanced trans-endothelial migration. Cancer Cell. 2023;41(9):1621-1636.e8.
47 J Martins Gama, R Caetano Oliveira, P Teixeira, et al. An immunohistochemical study of breast cancer brain metastases: the role of CD44 and AKT in the prognosis. Appl Immunohistochem Mol Morphol. 2023;31(5):318-323.
48 ME Heft Neal, JC Brenner, MEP Prince, SB Chinn. Advancement in cancer stem cell biology and precision medicine-review article head and neck cancer stem cell plasticity and the tumor microenvironment. Front Cell Dev Biol. 2021;9:660210.
49 M Leinung, B Ernst, C D?ring, et al. Expression of ALDH1A1 and CD44 in primary head and neck squamous cell carcinoma and their value for carcinogenesis, tumor progression and cancer stem cell identification. Oncol Lett. 2015;10(4):2289-2294.
50 KE Gomez, F Wu, SB Keysar, et al. Cancer Cell CD44 Mediates Macrophage/Monocyte-Driven Regulation of Head and Neck Cancer Stem CellsCD44 and Macrophages Regulate HNSCC Stem Cells. Cancer research. 2020;80(19):4185-4198.
51 H Liu, T Rokana, M Kawaguchi, et al. Homophilic CD44 interactions mediate tumor cell aggregation and polyclonal metastasis in patient-derived breast cancer models. Cancer Discov. 2019;9(1):96-113.
52 KE Gomez, F Wu, SB Keysar, et al. Cancer cell CD44 mediates macrophage/monocyte-driven regulation of head and neck cancer stem cells CD44 and macrophages regulate HNSCC stem cells. Cancer Res. 2020;80(19):4185-4198.
53 N Ludwig, MJ Szczepanski, A Gluszko, et al. CD44 (+) tumor cells promote early angiogenesis in head and neck squamous cell carcinoma. Cancer Lett. 2019;467:85-95.
54 J Odenthal, M Rijpkema, D Bos, et al. Targeting CD44v6 for fluorescence-guided surgery in head and neck squamous cell carcinoma. Sci Rep. 2018;8(1):10467.
55 J-H Choi, B-S Lee, JY Jang, et al. Single-cell transcriptome profiling of the stepwise progression of head and neck cancer. Nat Commun. 2023;14(1):1055.
56 L Escudero Mendez, M Srinivasan, RK Hamouda, et al. Evaluation of CD44+/CD24- and aldehyde dehydrogenase enzyme markers in cancer stem cells as prognostic indicators for triple-negative breast cancer. Cureus. 2022;14(8):e28056.
57 N Alateyah, I Gupta, RS Rusyniak, A Ouhtit. SOD2, a potential transcriptional target underpinning CD44-promoted breast cancer progression. molecules. 2022;27(3):811.
58 LE Stevens, G Peluffo, X Qiu, et al. JAK-STAT signaling in inflammatory breast cancer enables chemotherapy-resistant cell states. Cancer Res. 2023;83(2):264-284.
59 NK Dashzeveg, Y Jia, Y Zhang, et al. Dynamic glycoprotein hyposialylation promotes chemotherapy evasion and metastatic seeding of quiescent circulating tumor cell clusters in breast cancer. Cancer Discov. 2023;13(9):2050-2071.
60 J Gu, D Chen, Z Li, Y Yang, Z Ma, G Huang. Prognosis assessment of CD44+/CD24- in breast cancer patients: a systematic review and meta-analysis. Arch Gynecol Obstet. 2022;306(4):1147-1160.
61 R Gao, D Li, J Xun, et al. CD44ICD promotes breast cancer stemness via PFKFB4-mediated glucose metabolism. Theranostics. 2018;8(22):6248.
62 H Zhang, RL Brown, Y Wei, et al. CD44 splice isoform switching determines breast cancer stem cell state. Genes Dev. 2019;33(3-4):166-179.
63 C Yang, M Cao, Y Liu, et al. Inducible formation of leader cells driven by CD44 switching gives rise to collective invasion and metastases in luminal breast carcinomas. Oncogene. 2019;38(46):7113-7132.
64 Y Bei, N Cheng, T Chen, et al. CDK5 inhibition abrogates TNBC stem-cell property and enhances anti-PD-1 therapy. Adv Sci. 2020;7(22):2001417.
65 J Ma, R Wu, Z Chen, et al. CD44 is a prognostic biomarker correlated with immune infiltrates and metastasis in clear cell renal cell carcinoma. Anticancer Res. 2023;43(8):3493-3506.
66 J Ma, M Li, J Chai, et al. Expression of RSK4, CD44 and MMP-9 is upregulated and positively correlated in metastatic ccRCC. Diagn Pathol. 2020;15(1):1-10.
67 Y Sekino, X Han, G Kobayashi, et al. BUB1B overexpression is an independent prognostic marker and associated with CD44, p53, and PD-L1 in renal cell carcinoma. Oncology. 2021;99(4):240-250.
68 K Kozawa, M Sekai, K Ohba, et al. The CD44/COL17A1 pathway promotes the formation of multilayered, transformed epithelia. Curr Biol. 2021;31(14):3086-3097.e7.
69 D Li, S Liu, J Xu, et al. Ferroptosis-related gene CHAC1 is a valid indicator for the poor prognosis of kidney renal clear cell carcinoma. J Cell Mol Med. 2021;25(7):3610-3621.
70 F Xu, Y Guan, L Xue, et al. The effect of a novel glycolysis-related gene signature on progression, prognosis and immune microenvironment of renal cell carcinoma. BMC Cancer. 2020;20(1):1207.
71 M Fiedorowicz, MI Khan, D Strzemecki, et al. Renal carcinoma CD105-/CD44- cells display stem-like properties in vitro and form aggressive tumors in vivo. Sci Rep. 2020;10(1):5379.
72 Y-C Liu, C-T Yeh, K-H Lin. Cancer stem cell functions in hepatocellular carcinoma and comprehensive therapeutic strategies. Cells. 2020;9(6):1331.
73 I Zar?bska, A Gzil, J Dur?lewicz, et al. The clinical, prognostic and therapeutic significance of liver cancer stem cells and their markers. Clin Res Hepatol Gastroenterol. 2021;45(3):101664.
74 R Asai, H Tsuchiya, M Amisaki, et al. CD44 standard isoform is involved in maintenance of cancer stem cells of a hepatocellular carcinoma cell line. Cancer Med. 2019;8(2):773-782.
75 D Dhar, L Antonucci, H Nakagawa, et al. Liver cancer initiation requires p53 inhibition by CD44-enhanced growth factor signaling. Cancer Cell. 2018;33(6):1061-1077.e6.
76 SY Jun, HR Yoon, J-Y Yoon, et al. The human TOR signaling regulator is the key indicator of liver cancer patients' overall survival: TIPRL/LC3/CD133/CD44 as potential biomarkers for early liver cancers. Cancers (Basel). 2021;13(12):2925.
77 S Wang, Y Wang, X Xun, et al. Hedgehog signaling promotes sorafenib resistance in hepatocellular carcinoma patient-derived organoids. J Exp Clin Cancer Res. 2020;39(1):22.
78 DW-H Ho, Y-M Tsui, KM-F Sze, et al. Single-cell transcriptomics reveals the landscape of intra-tumoral heterogeneity and stemness-related subpopulations in liver cancer. Cancer Lett. 2019;459:176-185.
79 TB Toh, JJ Lim, L Hooi, MBMA Rashid, EK-H Chow. Targeting Jak/Stat pathway as a therapeutic strategy against SP/CD44+ tumorigenic cells in Akt/β-catenin-driven hepatocellular carcinoma. J Hepatol. 2020;72(1):104-118.
80 KS Bishnupuri, SK Sainathan, MA Ciorba, CW Houchen, BK Dieckgraefe. Reg4 interacts with CD44 to regulate proliferation and stemness of colorectal and pancreatic cancer cells. Mol Cancer Res. 2022;20(3):387-399.
81 A Gzil, I Zar?bska, W Bursiewicz, P Antosik, D Grzanka, ? Szylberg. Markers of pancreatic cancer stem cells and their clinical and therapeutic implications. Mol Biol Rep. 2019;46(6):6629-6645.
82 F Leon, P Seshacharyulu, RK Nimmakayala, et al. Reduction in O-glycome induces differentially glycosylated CD44 to promote stemness and metastasis in pancreatic cancer. Oncogene. 2022;41(1):57-71.
83 Z Xie, Y Gao, C Ho, et al. Exosome-delivered CD44v6/C1QBP complex drives pancreatic cancer liver metastasis by promoting fibrotic liver microenvironment. Gut. 2022;71(3):568-579.
84 S Kumar, JR Inigo, R Kumar, et al. Nimbolide reduces CD44 positive cell population and induces mitochondrial apoptosis in pancreatic cancer cells. Cancer Lett. 2018;413:82-93.
85 Y Liu, T Wu, D Lu, J Zhen, L Zhang. CD44 overexpression related to lymph node metastasis and poor prognosis of pancreatic cancer. Int J Biol Markers. 2018;33(3):308-313.
86 D Wang, H Zhu, Y Zhu, et al. Retraction notice to “CD133+/CD44+/Oct4+/Nestin+ stem-like cells isolated from Panc-1 cell line may contribute to multi-resistance and metastasis of pancreatic cancer” [Acta Histochemica 115 (2013) 349-356]. Acta Histochem. 2018;120(3):302.
87 A Spadea, JMR de la Rosa, A Tirella, et al. Evaluating the efficiency of hyaluronic acid for tumor targeting via CD44. Mol Pharm. 2019;16(6):2481-2493.
88 P Kesharwani, S Banerjee, S Padhye, FH Sarkar, AK Iyer. Hyaluronic acid engineered nanomicelles loaded with 3,4-difluorobenzylidene curcumin for targeted killing of CD44+ stem-like pancreatic cancer cells. Biomacromolecules. 2015;16(9):3042-3053.
89 P Kesharwani, L Xie, S Banerjee, et al. Hyaluronic acid-conjugated polyamidoamine dendrimers for targeted delivery of 3, 4-difluorobenzylidene curcumin to CD44 overexpressing pancreatic cancer cells. Colloids Surf B. 2015;136:413-423.
90 X Kang, F Bu, W Feng, et al. Dual-cascade responsive nanoparticles enhance pancreatic cancer therapy by eliminating tumor-resident intracellular bacteria. Adv Mater. 2022;34(49):e2206765.
91 L Qian, H Su, G Wang, B Li, G Shen, Q Gao. Anti-tumor activity of bufalin by inhibiting c-MET mediated MEK/ERK and PI3K/AKT signaling pathways in gallbladder cancer. J Cancer. 2020;11(11):3114-3123.
92 H Kalekou, D Miliaras. Immunohistochemical study of microvessel density, CD44 (standard form), p53 protein and c-erbB2 in gallbladder carcinoma. J Gastroenterol Hepatol. 2004;19(7):812-818.
93 T Miwa, T Nagata, H Kojima, S Sekine, T Okumura. Isoform switch of CD44 induces different chemotactic and tumorigenic ability in gallbladder cancer. Int J Oncol. 2017;51(3):771-780.
94 A Yamaguchi, M Zhang, T Goi, et al. Expression of variant CD44 containing variant exon v8-10 in gallbladder cancer. Oncol Rep. 2000;7(3):541-544.
95 B-B Yin, S-J Wu, H-J Zong, B-J Ma, D Cai. Preliminary screening and identification of stem cell-like sphere clones in a gallbladder cancer cell line GBC-SD. J Zhejiang Univ Sci B. 2011;12(4):256-263.
96 J Lai, S Yang, Z Lin, et al. Update on chemoresistance mechanisms to first-line chemotherapy for gallbladder cancer and potential reversal strategies. Am J Clin Oncol. 2023;46(4):131-141.
97 SA Khales, S Mozaffari-Jovin, D Geerts, MR Abbaszadegan. TWIST1 activates cancer stem cell marker genes to promote epithelial-mesenchymal transition and tumorigenesis in esophageal squamous cell carcinoma. BMC Cancer. 2022;22(1):1272.
98 K Tsuchihashi, Y Hirata, J Yamasaki, et al. Presence of spontaneous epithelial-mesenchymal plasticity in esophageal cancer. Biochem Biophys Rep. 2022;30:101246.
99 S Horitani, T Fukui, Y Tanimura, et al. Specific Smad2/3 linker phosphorylation indicates esophageal non-neoplastic and neoplastic stem-like cells and neoplastic development. Dig Dis Sci. 2021;66(6):1862-1874.
100 M Moghbeli, H Mosannen Mozaffari, B Memar, MM Forghanifard, M Gholamin, MR Abbaszadegan. Role of MAML1 in targeted therapy against the esophageal cancer stem cells. J Transl Med. 2019;17(1):1-12.
101 D Taniguchi, H Saeki, Y Nakashima, et al. CD44v9 is associated with epithelial-mesenchymal transition and poor outcomes in esophageal squamous cell carcinoma. Cancer Med. 2018;7(12):6258-6268.
102 J Zuo, K Zhu, Y Wang, Z Yu. MicroRNA-34a suppresses invasion and metastatic in esophageal squamous cell carcinoma by regulating CD44. Mol Cell Biochem. 2018;443(1-2):139-149.
103 X-M Yu, S-J Li, Z-T Yao, et al. N4-acetylcytidine modification of lncRNA CTC-490G23.2 promotes cancer metastasis through interacting with PTBP1 to increase CD44 alternative splicing. Oncogene. 2023;42(14):1101-1116.
104 K Li, X Sun, R Zha, et al. Counterintuitive production of tumor-suppressive secretomes from Oct4- and c-Myc-overexpressing tumor cells and MSCs. Theranostics. 2022;12(7):3084-3103.
105 X Wang, J Cai, L Zhao, et al. NUMB suppression by miR-9-5P enhances CD44+ prostate cancer stem cell growth and metastasis. Sci Rep. 2021;11(1):11210.
106 IM Koukourakis, K Platoni, V Kouloulias, S Arelaki, A Zygogianni. Prostate cancer stem cells: biology and treatment implications. Int J Mol Sci. 2023;24(19):14890.
107 Q Chen, M Gu, Z-K Cai, et al. TGF-β1 promotes epithelial-to-mesenchymal transition and stemness of prostate cancer cells by inducing PCBP1 degradation and alternative splicing of CD44. Cell Mol Life Sci. 2021;78(3):949-962.
108 J Rutz, S Thaler, S Maxeiner, FKH Chun, RA Blaheta. Sulforaphane reduces prostate cancer cell growth and proliferation in vitro by modulating the Cdk-cyclin axis and expression of the CD44 variants 4, 5, and 7. Int J Mol Sci. 2020;21(22):8724.
109 T Wróbel, M Luty, J Catapano, et al. CD44+ cells determine fenofibrate-induced microevolution of drug-resistance in prostate cancer cell populations. Stem Cells. 2020;38(12):1544-1556.
110 Z Liu, L Wang, H Xu, et al. Heterogeneous responses to mechanical force of prostate cancer cells inducing different metastasis patterns. Adv Sci. 2020;7(15):1903583.
111 S Chinnapaka, V Bakthavachalam, G Munirathinam. Repurposing antidepressant sertraline as a pharmacological drug to target prostate cancer stem cells: dual activation of apoptosis and autophagy signaling by deregulating redox balance. Am J Cancer Res. 2020;10(7):2043-2065.
112 S Verma, E Shankar, FNC Kalayci, et al. Androgen deprivation induces transcriptional reprogramming in prostate cancer cells to develop stem cell-like characteristics. Int J Mol Sci. 2020;21(24):9568.
113 J Li, T Pu, L Yin, Q Li, C-P Liao, BJ Wu. MAOA-mediated reprogramming of stromal fibroblasts promotes prostate tumorigenesis and cancer stemness. Oncogene. 2020;39(16):3305-3321.
114 W Hou, L Kong, Z Hou, H Ji. CD44 is a prognostic biomarker and correlated with immune infiltrates in gastric cancer. BMC Med Genomics. 2022;15(1):225.
115 R Fujiwara-Tani, T Sasaki, H Ohmori, et al. Concurrent expression of CD47 and CD44 in colorectal cancer promotes malignancy. Pathobiology. 2019;86(4):182-189.
116 R Pothuraju, S Rachagani, SR Krishn, et al. Molecular implications of MUC5AC-CD44 axis in colorectal cancer progression and chemoresistance. Mol Cancer. 2020;19(1):37.
117 F Wei, T Zhang, S-C Deng, et al. PD-L1 promotes colorectal cancer stem cell expansion by activating HMGA1-dependent signaling pathways. Cancer Lett. 2019;450:1-13.
118 C Wu, H Ding, S Wang, et al. DAXX inhibits cancer stemness and epithelial–mesenchymal transition in gastric cancer. Br J Cancer. 2020;122(10):1477-1485.
119 WM Lau, E Teng, HS Chong, et al. CD44v8-10 is a cancer-specific marker for gastric cancer stem cells. Cancer Res. 2014;74(9):2630-2641.
120 T Ishimoto, O Nagano, T Yae, et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell. 2011;19(3):387-400.
121 L Sun, Y Fang, X Wang, et al. miR-302a inhibits metastasis and cetuximab resistance in colorectal cancer by targeting NFIB and CD44. Theranostics. 2019;9(26):8409.
122 HP Weitzenb?ck, A Gschwendtner, C Wiesner, et al. Proteome analysis of NRF2 inhibition in melanoma reveals CD44 up-regulation and increased apoptosis resistance upon vemurafenib treatment. Cancer Med. 2022;11(4):956-967.
123 A Mohammadi, S Najafi, M Amini, B Baradaran, M Firouzamandi. B7H6 silencing increases chemosensitivity to dacarbazine and suppresses cell survival and migration in cutaneous melanoma. Melanoma Res. 2023;33(3):173-183.
124 C-Y Wei, M-X Zhu, Y-W Yang, et al. Downregulation of RNF128 activates Wnt/β-catenin signaling to induce cellular EMT and stemness via CD44 and CTTN ubiquitination in melanoma. J Hematol Oncol. 2019;12(1):21.
125 RS Sadeghi, K Kulej, RS Kathayat, et al. Wnt5a signaling induced phosphorylation increases APT1 activity and promotes melanoma metastatic behavior. eLife. 2018;7:e34362.
126 R-L Wu, G Sedlmeier, L Kyjacova, et al. Hyaluronic acid-CD44 interactions promote BMP4/7-dependent Id1/3 expression in melanoma cells. Sci Rep. 2018;8(1):14913.
127 Y Li, H Hou, Z Liu, et al. CD44 targeting nanodrug based on chondroitin sulfate for melanoma therapy by inducing mitochondrial apoptosis pathways. Carbohydr Polym. 2023;320:121255.
128 W Hu, Y Zhao, L Su, et al. Silencing the lncRNA NORAD inhibits EMT of head and neck squamous cell carcinoma stem cells via miR?26a?5p. Mol Med Rep. 2021;24(5):743.
129 S-SF Yuan, AC Hung, C-W Hsu, et al. CD44 mediates oral squamous cell carcinoma-promoting activity of MRE11 via AKT signaling. J Pers Med. 2022;12(5):841.
130 I Pastushenko, F Mauri, Y Song, et al. Fat1 deletion promotes hybrid EMT state, tumour stemness and metastasis. Nature. 2021;589(7842):448-455.
131 X Sun, Y Sun, J Li, et al. SOCS6 promotes radiosensitivity and decreases cancer cell stemness in esophageal squamous cell carcinoma by regulating c-Kit ubiquitylation. Cancer Cell Int. 2021;21(1):1-15.
132 S Yokoyama, H Shigeishi, H Murodumi, et al. TGF-β1 induces amoeboid-to-mesenchymal transition of CD44high oral squamous cell carcinoma cells via miR-422a downregulation through ERK activation and Cofilin-1 phosphorylation. J Oral Pathol Med. 2021;50(2):155-164.
133 E Fernández-Tabanera, L García-García, C Rodríguez-Martín, et al. CD44 modulates cell migration and invasion in Ewing sarcoma cells. Int J Mol Sci. 2023;24(14):11774.
134 E Fernández-Tabanera, RM Melero-Fernández de Mera, J Alonso. CD44 in sarcomas: a comprehensive review and future perspectives. Front Oncol. 2022;12:909450.
135 KM Skubitz, JD Wilson, EY Cheng, BR Lindgren, KLM Boylan, APN Skubitz. Effect of chemotherapy on cancer stem cells and tumor-associated macrophages in a prospective study of preoperative chemotherapy in soft tissue sarcoma. J Transl Med. 2019;17(1):130.
136 M Gerardo-Ramírez, FL Keggenhoff, V Giam, et al. CD44 contributes to the regulation of MDR1 protein and doxorubicin chemoresistance in osteosarcoma. Int J Mol Sci. 2022;23(15):8616.
137 T Liu, Z Yan, Y Liu, et al. CRISPR-Cas9-mediated silencing of CD44 in human highly metastatic osteosarcoma cells. Cell Physiol Biochem. 2018;46(3):1218-1230.
138 P Kogerman, M-S Sy, LA Culp. Counter-selection for over-expressed human CD44s in primary tumors versus lung metastases in a mouse fibrosarcoma model. Oncogene. 1997;15(12):1407-1416.
139 M Kuryu, T Ozaki, K Nishida, M Shibahara, A Kawai, H Inoue. Expression of CD44 variants in osteosarcoma. J Cancer Res Clin Oncol. 1999;125(11):646-652.
140 BP Toole. Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer. 2004;4(7):528-539.
141 M Al-Mansoob, I Gupta, R Stefan Rusyniak, A Ouhtit. KYNU, a novel potential target that underpins CD44-promoted breast tumour cell invasion. J Cell Mol Med. 2021;25(5):2309-2314.
142 A Aruffo, I Stamenkovic, M Melnick, CB Underhill, B Seed. CD44 is the principal cell surface receptor for hyaluronate. Cell. 1990;61(7):1303-1313.
143 Q Hua, CB Knudson, W Knudson. Internalization of hyaluronan by chondrocytes occurs via receptor-mediated endocytosis. J Cell Sci. 1993;106(Pt 1):365-375.
144 M Soleymani, M Velashjerdi, Z Shaterabadi, A Barati. One-pot preparation of hyaluronic acid-coated iron oxide nanoparticles for magnetic hyperthermia therapy and targeting CD44-overexpressing cancer cells. Carbohydr Polym. 2020;237:116130.
145 LY Bourguignon, C Earle, M Shiina. Activation of matrix hyaluronan-mediated CD44 signaling, epigenetic regulation and chemoresistance in head and neck cancer stem cells. Int J Mol Sci. 2017;18(9):1849.
146 R Golshani, L Lopez, V Estrella, M Kramer, N Iida, VB Lokeshwar. Hyaluronic acid synthase-1 expression regulates bladder cancer growth, invasion, and angiogenesis through CD44. Cancer Res. 2008;68(2):483-491.
147 LY Bourguignon, W Xia, G Wong. Hyaluronan-mediated CD44 interaction with p300 and SIRT1 regulates β-catenin signaling and NFκB-specific transcription activity leading to MDR1 and Bcl-xL gene expression and chemoresistance in breast tumor cells. J Biol Chem. 2009;284(5):2657-2671.
148 M Alamgeer, D Neil Watkins, I Banakh, et al. A phase IIa study of HA-irinotecan, formulation of hyaluronic acid and irinotecan targeting CD44 in extensive-stage small cell lung cancer. Invest New Drugs. 2018;36(2):288-298.
149 N Salari, K Mansouri, E Valipour, et al. Hyaluronic acid-based drug nanocarriers as a novel drug delivery system for cancer chemotherapy: a systematic review. DARU. 2021;29(2):439-447.
150 M Ahmed, JL Sottnik, GM Dancik, et al. An osteopontin/CD44 axis in RhoGDI2-mediated metastasis suppression. Cancer Cell. 2016;30(3):432-443.
151 J Ji, S Zheng, Y Liu, et al. Increased expression of OPN contributes to idiopathic pulmonary fibrosis and indicates a poor prognosis. J Transl Med. 2023;21(1):640.
152 X Pang, K Gong, X Zhang, S Wu, Y Cui, B-Z Qian. Osteopontin as a multifaceted driver of bone metastasis and drug resistance. Pharmacol Res. 2019;144:235-244.
153 G Rao, H Wang, B Li, et al. Reciprocal interactions between tumor-associated macrophages and CD44-positive cancer cells via osteopontin/CD44 promote tumorigenicity in colorectal cancer the interaction of OPN and CD44 in colorectal cancer. Clin Cancer Res. 2013;19(4):785-797.
154 BW Robertson, L Bonsal, MA Chellaiah. Regulation of Erk1/2 activation by osteopontin in PC3 human prostate cancer cells. Mol Cancer. 2010;9:260.
155 Y-J Jiang, C-C Chao, A-C Chang, et al. Cigarette smoke-promoted increases in osteopontin expression attract mesenchymal stem cell recruitment and facilitate lung cancer metastasis. J Adv Res. 2022;41:77-87.
156 JD Klement, AV Paschall, PS Redd, et al. An osteopontin/CD44 immune checkpoint controls CD8+ T cell activation and tumor immune evasion. J Clin Invest. 2018;128(12):5549-5560.
157 C Lu, Z Liu, JD Klement, et al. WDR5-H3K4me3 epigenetic axis regulates OPN expression to compensate PD-L1 function to promote pancreatic cancer immune escape. J Immunother Cancer. 2021;9(7):e002624.
158 D Manou, NK Karamanos, AD Theocharis. Tumorigenic functions of serglycin: Regulatory roles in epithelial to mesenchymal transition and oncogenic signaling. Semin Cancer Biol. 2020;62:108-115.
159 G Pejler, M ?brink, S Wernersson. Serglycin proteoglycan: regulating the storage and activities of hematopoietic proteases. Biofactors. 2009;35(1):61-68.
160 J-Y Guo, C-H Chiu, M-J Wang, F-A Li, J-Y Chen. Proteoglycan serglycin promotes non-small cell lung cancer cell migration through the interaction of its glycosaminoglycans with CD44. J Biomed Sci. 2020;27(1):1-18.
161 L Cao, FF Luo, HB Huang, et al. The autoregulatory serglycin/CD44 axis drives stemness-like phenotypes in TNBC in a β-catenin-dependent manner. Clin Transl Med. 2021;11(2):e311.
162 Y He, D Cheng, C Lian, et al. Serglycin induces osteoclastogenesis and promotes tumor growth in giant cell tumor of bone. Cell Death Dis. 2021;12(10):868.
163 X Liang, X Liang. Chondroitin sulfate modified and adriamycin preloaded hybrid nanoparticles for tumor-targeted chemotherapy of lung cancer. Kaohsiung J Med Sci. 2021;37(5):411-418.
164 WJ Lin, WC Lee. Polysaccharide-modified nanoparticles with intelligent CD44 receptor targeting ability for gene delivery. Int J Nanomed. 2018;13:3989.
165 T Tan, Q Yang, D Chen, et al. Chondroitin sulfate-mediated albumin corona nanoparticles for the treatment of breast cancer. Asian J Pharm Sci. 2021;16(4):508-518.
166 K Luo, F Xu, T Yao, et al. TPGS and chondroitin sulfate dual-modified lipid-albumin nanosystem for targeted delivery of chemotherapeutic agent against multidrug-resistant cancer. Int J Biol Macromol. 2021;183:1270-1282.
167 Y-H Chu, W-C Liao, Y-J Ho, C-H Huang, T-J Tseng, C-H Liu. Targeting chondroitin sulfate reduces invasiveness of glioma cells by suppressing CD44 and integrin β1 expression. Cells. 2021;10(12):3594.
168 M Chrabańska, M Rynkiewicz, P Kiczmer, B Drozdzowska. Immunohistochemical expression of CD44, MMP-2, MMP-9, and Ki-67 as the prognostic markers in non-clear cell renal cell carcinomas: a prospective cohort study. J Clin Med. 2022;11(17):5196.
169 X Song, F Ding, W Luo, et al. Knockdown of CD44 inhibits proliferation, migration, and invasiveness in hepatocellular carcinoma cells by modulating CXCR4/Wnt/β-Catenin Axis. Acta Biochim Pol. 2023;70(1):117-122.
170 Y Lv, X Zhao, L Zhu, et al. Targeting intracellular MMPs efficiently inhibits tumor metastasis and angiogenesis. Theranostics. 2018;8(10):2830.
171 J Shi, Y Ren, J Ma, et al. Novel CD44-targeting and pH/redox-dual-stimuli-responsive core–shell nanoparticles loading triptolide combats breast cancer growth and lung metastasis. J Nanobiotechnol. 2021;19(1):1-22.
172 YS Ko, EJ Jung, S-I Go, et al. Polyphenols extracted from Artemisia annua L. exhibit anti-cancer effects on radio-resistant MDA-MB-231 human breast cancer cells by suppressing stem cell phenotype, β-catenin, and MMP-9. Molecules. 2020;25(8):1916.
173 Y-M Lee, JM Kim, HJ Lee, I-O Seong, K-H Kim. Immunohistochemical Expression of CD44, Matrix Metalloproteinase2 and Matrix Metalloproteinase9 in Renal Cell Carcinomas. Elsevier; 2019:742-748.
174 S-Y Chen, I-M Jou, P-Y Ko, et al. Amelioration of experimental tendinopathy by lentiviral CD44 gene therapy targeting senescence-associated secretory phenotypes. Mol Ther Methods Clin Dev. 2022;26:157-168.
175 A Papadopoulou, VE Kalodimou, E Mavrogonatou, et al. Decreased differentiation capacity and altered expression of extracellular matrix components in irradiation-mediated senescent human breast adipose-derived stem cells. IUBMB Life. 2022;74(10):969-981.
176 M Asano, S Tanaka, M Sakaguchi. Effects of normothermic microwave irradiation on CD44+/CD24?in breast cancer MDA-MB-231 and MCF-7 cell lines. Biosci Biotechnol Biochem. 2020;84(1):103-110.
177 NG Nikitakis, I Gkouveris, J Aseervatham, K Barahona, KU Ogbureke. DSPP-MMP20 gene silencing downregulates cancer stem cell markers in human oral cancer cells. Cell Mol Biol Lett. 2018;23(1):1-14.
178 L Li, L Qi, T Qu, et al. Epithelial splicing regulatory protein 1 inhibits the invasion and metastasis of lung adenocarcinoma. Am J Pathol. 2018;188(8):1882-1894.
179 LT Senbanjo, H AlJohani, S Majumdar, MA Chellaiah. Characterization of CD44 intracellular domain interaction with RUNX2 in PC3 human prostate cancer cells. Cell Commun Signal. 2019;17(1):1-13.
180 H Kato, A Naiki-Ito, T Yamada, et al. The standard form of CD44 as a marker for invasion of encapsulated papillary carcinoma of the breast. Pathol Int. 2020;70(11):835-843.
181 X Sun, K Li, M Hase, et al. Suppression of breast cancer-associated bone loss with osteoblast proteomes via Hsp90ab1/moesin-mediated inhibition of TGFβ/FN1/CD44 signaling. Theranostics. 2022;12(2):929-943.
182 S Choi, J Yu, A Park, et al. BMP-4 enhances epithelial mesenchymal transition and cancer stem cell properties of breast cancer cells via Notch signaling. Sci Rep. 2019;9(1):11724.
183 SM Frahs, JC Reeck, KM Yocham, et al. Prechondrogenic ATDC5 cell attachment and differentiation on graphene foam; modulation by surface functionalization with fibronectin. ACS Appl Mater Interfaces. 2019;11(45):41906-41924.
184 C Hu, M Li, T Guo, et al. Anti-metastasis activity of curcumin against breast cancer via the inhibition of stem cell-like properties and EMT. Phytomedicine. 2019;58:152740.
185 N Li, C Wang, S Sun, et al. Microgravity-induced alterations of inflammation-related mechanotransduction in endothelial cells on Board SJ-10 satellite. Front Physiol. 2018;9:1025.
186 G-X Huang, M-F Qi, X-L Li, F Tang, L Zhu. Involvement of upregulation of fibronectin in the pro?adhesive and pro?survival effects of glucocorticoid on melanoma cells. Mol Med Rep. 2018;17(2):3380-3387.
187 Y Hong, H Qin, Y Li, et al. FNDC3B circular RNA promotes the migration and invasion of gastric cancer cells via the regulation of E-cadherin and CD44 expression. J Cell Physiol. 2019;234(11):19895-19910.
188 I Figiel, PK Kruk, M Zar?ba-Kozio?, et al. MMP-9 signaling pathways that engage Rho GTPases in brain plasticity. Cells. 2021;10(1):166.
189 P Tata, P Gondaliya, A Sunkaria, A Srivastava, K Kalia. Modulation of CD44, EGFR and RAC pathway genes (WAVE complex) in epithelial cancers. Curr Pharm Des. 2019;25(8):833-848.
190 R-J Bai, D Liu, Y-S Li, et al. OPN inhibits autophagy through CD44, integrin and the MAPK pathway in osteoarthritic chondrocytes. Front Endocrinol (Lausanne). 2022;13:919366.
191 LYW Bourguignon, C Earle, G Wong, CC Spevak, K Krueger. Stem cell marker (Nanog) and Stat-3 signaling promote MicroRNA-21 expression and chemoresistance in hyaluronan/CD44-activated head and neck squamous cell carcinoma cells. Oncogene. 2012;31(2):149-160.
192 PA Medrano-González, O Rivera-Ramírez, LF Monta?o, EP Rendón-Huerta. Proteolytic processing of CD44 and its implications in cancer. Stem Cells Int. 2021;2021:6667735.
193 M Primeaux, S Gowrikumar, P Dhawan. Role of CD44 isoforms in epithelial-mesenchymal plasticity and metastasis. Clin Exp Metastasis. 2022;39(3):391-406.
194 R Roy, S Mandal, J Chakrabarti, P Saha, CK Panda. Downregulation of hyaluronic acid-CD44 signaling pathway in cervical cancer cell by natural polyphenols Plumbagin, Pongapin and Karanjin. Mol Cell Biochem. 2021;476(10):3701-3709.
195 P Jiang, F Li, Z Liu, S Hao, J Gao, S Li. BTB and CNC homology 1 (Bach1) induces lung cancer stem cell phenotypes by stimulating CD44 expression. Respir Res. 2021;22(1):320.
196 BJ Petri, KM Piell, GCS Whitt, et al. HNRNPA2B1 regulates tamoxifen-and fulvestrant-sensitivity and hallmarks of endocrine resistance in breast cancer cells. Cancer Lett. 2021;518:152-168.
197 S Erdogan, K Turkekul. Neferine inhibits proliferation and migration of human prostate cancer stem cells through p38 MAPK/JNK activation. J Food Biochem. 2020;44(7):e13253.
198 C Lin, H Yuan, W Wang, et al. Importance of PNO1 for growth and survival of urinary bladder carcinoma: role in core-regulatory circuitry. J Cell Mol Med. 2020;24(2):1504-1515.
199 Q Guo, Y Liu, Y He, et al. CD44 activation state regulated by the CD44v10 isoform determines breast cancer proliferation. Oncol Rep. 2021;45(4):7.
200 S Erdogan, K Turkekul, I Dibirdik, ZB Doganlar, O Doganlar, A Bilir. Midkine silencing enhances the anti-prostate cancer stem cell activity of the flavone apigenin: cooperation on signaling pathways regulated by ERK, p38, PTEN, PARP, and NF-κB. Invest New Drugs. 2020;38(2):246-263.
201 T-H Jang, W-C Huang, S-L Tung, et al. MicroRNA-485-5p targets keratin 17 to regulate oral cancer stemness and chemoresistance via the integrin/FAK/Src/ERK/β-catenin pathway. J Biomed Sci. 2022;29(1):42.
202 J Sun, Y Xu, J Liu, H Cui, H Cao, J Ren. PDRG1 promotes the proliferation and migration of GBM cells by the MEK/ERK/CD44 pathway. Cancer Sci. 2022;113(2):500-516.
203 Y Zhao, J-H Kang, K-C Yoo, S-G Kang, H-J Lee, S-J Lee. K-RAS acts as a critical regulator of CD44 to promote the invasiveness and stemness of GBM in response to ionizing radiation. Int J Mol Sci. 2021;22(20):10923.
204 Y-Y Wang, A Vadhan, P-H Chen, et al. Cd44 promotes lung cancer cell metastasis through erk–zeb1 signaling. Cancers (Basel). 2021;13(16):4057.
205 P Thirusangu, U Ray, S Sarkar Bhattacharya, et al. PFKFB3 regulates cancer stemness through the hippo pathway in small cell lung carcinoma. Oncogene. 2022;41(33):4003-4017.
206 J Zhang, X He, Y Wan, et al. CD44 promotes hepatocellular carcinoma progression via upregulation of YAP. Exp Hematol Oncol. 2021;10(1):54.
207 J Giraud, S Molina-Castro, L Seeneevassen, et al. Verteporfin targeting YAP1/TAZ-TEAD transcriptional activity inhibits the tumorigenic properties of gastric cancer stem cells. Int J Cancer. 2020;146(8):2255-2267.
208 Y Liu, Y Song, M Cao, et al. A novel EHD1/CD44/Hippo/SP1 positive feedback loop potentiates stemness and metastasis in lung adenocarcinoma. Clin Transl Med. 2022;12(4):e836.
209 K Tanaka, H Osada, Y Murakami-Tonami, Y Horio, T Hida, Y Sekido. Statin suppresses Hippo pathway-inactivated malignant mesothelioma cells and blocks the YAP/CD44 growth stimulatory axis. Cancer Lett. 2017;385:215-224.
210 C-J Lai, C-Y Lin, W-Y Liao, T-C Hour, H-D Wang, C-P Chuu. CD44 promotes migration and invasion of docetaxel-resistant prostate cancer cells likely via induction of hippo-yap signaling. Cells. 2019;8(4):295.
211 N Zhao, L Zhou, Q Lu, et al. SOX2 maintains the stemness of retinoblastoma stem-like cells through Hippo/YAP signaling pathway. Exp Eye Res. 2022;214:108887.
212 Y Zhou, S Qiu, JT Kim, et al. Garcinone C suppresses tumorsphere formation and invasiveness by hedgehog/Gli1 signaling in colorectal cancer stem-like cells. J Agric Food Chem. 2022;70(26):7941-7952.
213 SP Lall, ZW Alsafwani, SK Batra, P Seshacharyulu. ASPORIN: A root of the matter in tumors and their host environment. Biochim Biophys Acta Rev Cancer. 2023;1879(1):189029.
214 JL Huang, M Oshi, I Endo, K Takabe. Clinical relevance of stem cell surface markers CD133, CD24, and CD44 in colorectal cancer. Am J Cancer Res. 2021;11(10):5141-5154.
215 C Li, Y Du, Z Yang, et al. GALNT1-mediated glycosylation and activation of sonic hedgehog signaling maintains the self-renewal and tumor-initiating capacity of bladder cancer stem cells. Cancer Res. 2016;76(5):1273-1283.
216 A-N Tsao, Y-S Chuang, Y-C Lin, Y Su, T-C Chao. Dinaciclib inhibits the stemness of two subtypes of human breast cancer cells by targeting the FoxM1 and Hedgehog signaling pathway. Oncol Rep. 2022;47(5):105.
217 D Zhou, Y He, H Li, W Huang. KLK6 mediates stemness and metabolism of gastric carcinoma cells via the PI3K/AKT/mTOR signaling pathway. Oncol Lett. 2021;22(6):824.
218 L Fan, C Peng, X Zhu, et al. Dihydrotanshinone I enhances cell adhesion and inhibits cell migration in osteosarcoma U-2 OS cells through CD44 and chemokine signaling. Molecules. 2022;27(12):3714.
219 K-L Coleman, M Chiaramonti, B Haddad, et al. Phosphorylation of IGFBP-3 by casein kinase 2 blocks its interaction with hyaluronan, enabling HA-CD44 signaling leading to increased NSCLC cell survival and cisplatin resistance. Cells. 2023;12(3):405.
220 M Thanee, H Dokduang, Y Kittirat, et al. CD44 modulates metabolic pathways and altered ROS-mediated Akt signal promoting cholangiocarcinoma progression. PLoS One. 2021;16(3):e0245871.
221 B Geng, J Pan, T Zhao, et al. Chitinase 3-like 208-CD44 interaction promotes metastasis and epithelial-to-mesenchymal transition through β-catenin/Erk/Akt signaling in gastric cancer. J Exp Clin Cancer Res. 2018;37(1):1-20.
222 P Xie, J Yan, M Wu, et al. CD44 potentiates hepatocellular carcinoma migration and extrahepatic metastases via the AKT/ERK signaling CXCR4 axis. Ann Transl Med. 2022;10(12):689.
223 T Kashyap, KK Pramanik, N Nath, et al. Crosstalk between Raf-MEK-ERK and PI3K-Akt-GSK3β signaling networks promotes chemoresistance, invasion/migration and stemness via expression of CD44 variants (v4 and v6) in oral cancer. Oral Oncol. 2018;86:234-243.
224 J Wang, X Li, H Wu, et al. EMP1 regulates cell proliferation, migration, and stemness in gliomas through PI3K-AKT signaling and CD44. J Cell Biochem. 2019;120(10):17142-17150.
225 YW Koh, J-H Han, S Haam. Expression of PD-L1, cancer stem cell and epithelial-mesenchymal transition phenotype in non-small cell lung cancer. Pathology (Phila). 2021;53(2):239-246.
226 J-T Chen, Y-L Hsu, Y-C Hsu, et al. Id2 exerts tumor suppressor properties in lung cancer through its effects on cancer cell invasion and migration. Front Oncol. 2022;12:801300.
227 J Su, S Wu, H Wu, L Li, T Guo. CD44 is functionally crucial for driving lung cancer stem cells metastasis through Wnt/β-catenin-FoxM1-Twist signaling. Mol Carcinog. 2016;55(12):1962-1973.
228 E Acikgoz, C Tatar, G Oktem. Triptolide inhibits CD133+ /CD44+ colon cancer stem cell growth and migration through triggering apoptosis and represses epithelial-mesenchymal transition via downregulating expressions of snail, slug, and twist. J Cell Biochem. 2020;121(5-6):3313-3324.
229 RA Mahmoudian, ML Gharaie, MR Abbaszadegan, et al. Crosstalk between MMP-13, CD44, and TWIST1 and its role in regulation of EMT in patients with esophageal squamous cell carcinoma. Mol Cell Biochem. 2021;476(6):2465-2478.
230 M Heydari, A Hosseinzadeh Colagar, E Moudi. Mutant Allele of CD44 (rs8193C>T) and Pum2 regulatory element as a prognosis factor of prostate neoplasms: a case-control and in silico studies. Cell J. 2022;24(12):723-731.
231 J-Y Byun, K Huang, JS Lee, et al. Targeting HIF-1α/NOTCH1 pathway eliminates CD44+ cancer stem-like cell phenotypes, malignancy, and resistance to therapy in head and neck squamous cell carcinoma. Oncogene. 2022;41(9):1352-1363.
232 J Bai, W-B Chen, X-Y Zhang, et al. HIF-2α regulates CD44 to promote cancer stem cell activation in triple-negative breast cancer via PI3K/AKT/mTOR signaling. World J Stem Cells. 2020;12(1):87-99.
233 X Gu, J Zhang, Y Shi, et al. ESM1/HIF?1α pathway modulates chronic intermittent hypoxia?induced non?small?cell lung cancer proliferation, stemness and epithelial?mesenchymal transition. Oncol Rep. 2021;45(3):1226-1234.
234 A Inoue, T Ohnishi, M Nishikawa, et al. A narrative review on CD44's role in glioblastoma invasion, proliferation, and tumor recurrence. Cancers (Basel). 2023;15(19):4898.
235 E Johansson, ES Grassi, V Pantazopoulou, et al. CD44 Interacts with HIF-2α to modulate the hypoxic phenotype of perinecrotic and perivascular glioma cells. Cell Rep. 2017;20(7):1641-1653.
236 H-L Yang, P-Y Lin, C Vadivalagan, Y-A Lin, K-Y Lin, Y-C Hseu. Coenzyme Q0 defeats NLRP3-mediated inflammation, EMT/metastasis, and Warburg effects by inhibiting HIF-1α expression in human triple-negative breast cancer cells. Arch Toxicol. 2023;97(4):1047-1068.
237 L Piao, H Li, Y Feng, Z Yang, S Kim, Y Xuan. SET domain-containing 5 is a potential prognostic biomarker that promotes esophageal squamous cell carcinoma stemness. Exp Cell Res. 2020;389(1):111861.
238 G Liang, S Li, W Du, Q Ke, J Cai, J Yang. Hypoxia regulates CD44 expression via hypoxia-inducible factor-1α in human gastric cancer cells. Oncol Lett. 2017;13(2):967-972.
239 K Nam, S Oh, I Shin. Ablation of CD44 induces glycolysis-to-oxidative phosphorylation transition via modulation of the c-Src-Akt-LKB1-AMPKα pathway. Biochem J. 2016;473(19):3013-3030.
240 S Kim, CY Cho, D Lee, et al. CD133-induced TM4SF5 expression promotes sphere growth via recruitment and blocking of protein tyrosine phosphatase receptor type F (PTPRF). Cancer Lett. 2018;438:219-231.
241 J Liu, X Chen, T Ward, et al. Niclosamide inhibits epithelial-mesenchymal transition and tumor growth in lapatinib-resistant human epidermal growth factor receptor 2-positive breast cancer. Int J Biochem Cell Biol. 2016;71:12-23.
242 K Nam, S Oh, K-M Lee, S-A Yoo, I Shin. CD44 regulates cell proliferation, migration, and invasion via modulation of c-Src transcription in human breast cancer cells. Cell Signal. 2015;27(9):1882-1894.
243 LYW Bourguignon, G Wong, C Earle, K Krueger, CC Spevak. Hyaluronan-CD44 interaction promotes c-Src-mediated twist signaling, microRNA-10b expression, and RhoA/RhoC up-regulation, leading to Rho-kinase-associated cytoskeleton activation and breast tumor cell invasion. J Biol Chem. 2010;285(47):36721-36735.
244 D Lee, J Na, J Ryu, et al. Interaction of tetraspan (in) TM4SF5 with CD44 promotes self-renewal and circulating capacities of hepatocarcinoma cells. Hepatology. 2015;61(6):1978-1997.
245 M Katoh. Multi?layered prevention and treatment of chronic inflammation, organ fibrosis and cancer associated with canonical WNT/β?catenin signaling activation (Review). Int J Mol Med. 2018;42(2):713-725.
246 S Roy, M Kar, S Roy, et al. Inhibition of CD44 sensitizes cisplatin-resistance and affects Wnt/β-catenin signaling in HNSCC cells. Int J Biol Macromol. 2020;149:501-512.
247 K Guo, J Duan, J Lu, et al. Tumor necrosis factor-α-inducing protein of Helicobacter pylori promotes epithelial-mesenchymal transition and cancer stem-like cells properties via activation of Wnt/β-catenin signaling pathway in gastric cancer cells. Pathog Dis. 2022;80(1):ftac025.
248 M Zhang, X Wang, X Xia, X Fang, T Zhang, F Huang. Endometrial epithelial cells-derived exosomes deliver microRNA-30c to block the BCL9/Wnt/CD44 signaling and inhibit cell invasion and migration in ovarian endometriosis. Cell Death Discov. 2022;8(1):151.
249 Q Li, Y Li, H Jiang, et al. Vitamin D suppressed gastric cancer cell growth through downregulating CD44 expression in vitro and in vivo. Nutrition. 2021;91:111413.
250 Y Fan, H Cheng, Y Liu, et al. Metformin anticancer: Reverses tumor hypoxia induced by bevacizumab and reduces the expression of cancer stem cell markers CD44/CD117 in human ovarian cancer SKOV3 cells. Front Pharmacol. 2022;13:955984.
251 M Kim, JS Lee, W Kim, et al. Aptamer-conjugated nano-liposome for immunogenic chemotherapy with reversal of immunosuppression. J Control Release. 2022;348:893-910.
252 JM Espejo-Román, B Rubio-Ruiz, V Cano-Cortés, et al. Selective anticancer therapy based on a HA-CD44 interaction inhibitor loaded on polymeric nanoparticles. Pharmaceutics. 2022;14(4):788.
253 Y Chen, H Wang, Y Zuo, N Li, M Ding, C Li. A novel monoclonal antibody KMP1 has potential antitumor activity of bladder cancer by blocking CD44 in vivo and in vitro. Cancer Med. 2018;7(5):2064-2077.
254 J Takei, MK Kaneko, T Ohishi, et al. A defucosylated anti?CD44 monoclonal antibody 5?mG2a?f exerts antitumor effects in mouse xenograft models of oral squamous cell carcinoma. Oncol Rep. 2020;44(5):1949-1960.
255 F Khan, S Gurung, GR Gunassekaran, et al. Identification of novel CD44v6-binding peptides that block CD44v6 and deliver a pro-apoptotic peptide to tumors to inhibit tumor growth and metastasis in mice. Theranostics. 2021;11(3):1326-1344.
256 D Price, R Muterspaugh, B Clegg, et al. IGFBP-3 blocks hyaluronan-CD44 signaling, leading to increased acetylcholinesterase levels in A549 cell media and apoptosis in a p53-dependent manner. Sci Rep. 2020;10(1):5083.
257 J Zheng, S Zhao, X Yu, S Huang, HY Liu. Simultaneous targeting of CD44 and EpCAM with a bispecific aptamer effectively inhibits intraperitoneal ovarian cancer growth. Theranostics. 2017;7(5):1373-1388.
258 H Wang, Z Zhu, G Zhang, et al. AS1411 aptamer/hyaluronic acid-bifunctionalized microemulsion co-loading shikonin and docetaxel for enhanced antiglioma therapy. J Pharm Sci. 2019;108(11):3684-3694.
259 Y Zhu, F Fu, Z Wang, et al. Polyphyllin VII is a potential drug targeting CD44 positive colon cancer cells. Curr Cancer Drug Targets. 2022;22(5):426-435.
260 J Li, M Li, L Tian, et al. Facile strategy by hyaluronic acid functional carbon dot-doxorubicin nanoparticles for CD44 targeted drug delivery and enhanced breast cancer therapy. Int J Pharm. 2020;578:119122.
261 ? Yilmaz, S K?ksoy, T ?eker, M Aslan. Diclofenac down-regulates COX-2 induced expression of CD44 and ICAM-1 in human HT29 colorectal cancer cells. Naunyn Schmiedebergs Arch Pharmacol. 2021;394(11):2259-2272.
262 D Chen, D Li, X-B Xu, et al. Galangin inhibits epithelial-mesenchymal transition and angiogenesis by downregulating CD44 in glioma. J Cancer. 2019;10(19):4499-4508.
263 BM Jobani, N Najafzadeh, M Mazani, M Arzanlou, MM Vardin. Molecular mechanism and cytotoxicity of allicin and all-trans retinoic acid against CD44+ versus CD117+ melanoma cells. Phytomedicine. 2018;48:161-169.
264 H-J Lee, SM Lim, HY Jang, YR Kim, J-S Hong, GJ Kim. miR-373-3p regulates invasion and migration abilities of trophoblast cells via targeted CD44 and radixin. Int J Mol Sci. 2021;22(12):6260.
265 Z Gao, X Ye, A Bordeaux, et al. miR-26b regulates cell proliferation and apoptosis of CD117+CD44+ ovarian cancer stem cells by targeting PTEN. Eur J Histochem. 2021;65(1):3186.
266 WJ Li, Y Wang, R Liu, et al. MicroRNA-34a: potent tumor suppressor, cancer stem cell inhibitor, and potential anticancer therapeutic. Front Cell Dev Biol. 2021;9:640587.
267 Y Yu, P Nangia-Makker, L Farhana, SG Rajendra, E Levi, APN Majumdar. miR-21 and miR-145 cooperation in regulation of colon cancer stem cells. Mol Cancer. 2015;14:98.
268 C Liu, K Kelnar, B Liu, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011;17(2):211-215.
269 S Feng, K Wang, Z Shao, Q Lin, B Li, P Liu. MiR-373/miR-520s-CD44 axis significantly inhibits the growth and invasion of human glioblastoma cells. Arch Med Res. 2022;53(6):550-561.
270 H-N Li, H-M Zhang, X-R Li, et al. MiR-205-5p/GGCT attenuates growth and metastasis of papillary thyroid cancer by regulating CD44. Endocrinology. 2022;163(4):bqac022.
271 H Yao, L Sun, J Li, et al. A novel therapeutic siRNA nanoparticle designed for dual-targeting CD44 and Gli1 of gastric cancer stem cells. Int J Nanomed. 2020;15:7013-7034.
272 P Mahinfar, A Mokhtarzadeh, B Baradaran, E Siasi Torbati. Antiproliferative activity of CD44 siRNA-PEI-PEG nanoparticles in glioblastoma: involvement of AKT signaling. Res Pharm Sci. 2022;17(1):78-85.
273 H Alemohammad, R Motafakkerazad, Z Asadzadeh, et al. siRNA-mediated silencing of Nanog reduces stemness properties and increases the sensitivity of HepG2 cells to cisplatin. Gene. 2022;821:146333.
274 W Zou, Y Zhang, G Bai, et al. siRNA-induced CD44 knockdown suppresses the proliferation and invasion of colorectal cancer stem cells through inhibiting epithelial-mesenchymal transition. J Cell Mol Med. 2022;26(7):1969-1978.
275 F Vahidian, E Safarzadeh, A Mohammadi, et al. siRNA-mediated silencing of CD44 delivered by Jet Pei enhanced Doxorubicin chemo sensitivity and altered miRNA expression in human breast cancer cell line (MDA-MB468). Mol Biol Rep. 2020;47(12):9541-9551.
276 J Yin, H Zhang, X Wu, et al. CD44 inhibition attenuates EGFR signaling and enhances cisplatin sensitivity in human EGFR wild?type non?small?cell lung cancer cells. Int J Mol Med. 2020;45(6):1783-1792.
277 S Porcellini, C Asperti, S Corna, et al. CAR T cells redirected to CD44v6 control tumor growth in lung and ovary adenocarcinoma bearing mice. Front Immunol. 2020;11:99.
278 Y Cao, SK Efetov, M He, et al. Updated clinical perspectives and challenges of chimeric antigen receptor-T cell therapy in colorectal cancer and invasive breast cancer. Arch Immunol Ther Exp (Warsz). 2023;71(1):19.
279 CM Grunewald, C Haist, C K?nig, et al. Epigenetic priming of bladder cancer cells with decitabine increases cytotoxicity of human EGFR and CD44v6 CAR engineered T-cells. Front Immunol. 2021;12:782448.
280 L Tang, H Huang, Y Tang, et al. CD44v6 chimeric antigen receptor T cell specificity towards AML with FLT3 or DNMT3A mutations. Clin Transl Med. 2022;12(9):e1043.
281 C Haist, E Schulte, N Bartels, et al. CD44v6-targeted CAR T-cells specifically eliminate CD44 isoform 6 expressing head/neck squamous cell carcinoma cells. Oral Oncol. 2021;116:105259.
282 H Wang, X Ye, Y Ju, et al. Minicircle DNA-mediated CAR T cells targeting CD44 suppressed hepatocellular carcinoma both in vitro and in vivo. Onco Targets Ther. 2020;13:3703-3716.
283 H Xia, M Hao, K Li, et al. CD44 and HAP-conjugated hADSCs as living materials for targeted tumor therapy and bone regeneration. Adv Sci (Weinh). 2023;10(20):e2206393.
284 J Gonzalez-Valdivieso, R Vallejo, S Rodriguez-Rojo, et al. CD44-targeted nanoparticles for co-delivery of docetaxel and an Akt inhibitor against colorectal cancer. Biomater Adv. 2023;154:213595.
285 RT Uma Maheswari, V Ajithkumar, P Varalakshmi, M Rajan. CD44 tagged hyaluronic acid - chitosan liposome carrier for the delivery of berberine and doxorubicin into lung cancer cells. Int J Biol Macromol. 2023;253(Pt 2):126599.
286 P Liu, N Chen, L Yan, et al. Preparation, characterisation and in vitro and in vivo evaluation of CD44-targeted chondroitin sulphate-conjugated doxorubicin PLGA nanoparticles. Carbohydr Polym. 2019;213:17-26.
287 Y Byeon, J-W Lee, WS Choi, et al. CD44-targeting PLGA nanoparticles incorporating paclitaxel and FAK siRNA overcome chemoresistance in epithelial ovarian cancer overcoming chemoresistance by HA-PLGA-NP in ovarian cancer. Cancer Res. 2018;78(21):6247-6256.
288 H-Y Seok, NS Rejinold, KM Lekshmi, K Cherukula, I-K Park, Y-C Kim. CD44 targeting biocompatible and biodegradable hyaluronic acid cross-linked zein nanogels for curcumin delivery to cancer cells: in vitro and in vivo evaluation. J Control Release. 2018;280:20-30.
289 Y Liang, Y Wang, L Wang, et al. Self-crosslinkable chitosan-hyaluronic acid dialdehyde nanoparticles for CD44-targeted siRNA delivery to treat bladder caner. Bioact Mater. 2021;6(2):433-446.
290 Y Wang, Y Guo, H Lin, et al. Expression of CD44 in tumor tissue and serum of small cell lung cancer and its clinical prognostic significance. Zhongguo Fei Ai Za Zhi. 2021;24(8):583-590.
291 A Agrawal, C Datta, CK Panda, DK Pal. Association of beta-catenin and CD44 in the development of renal cell carcinoma. Urologia. 2021;88(2):125-129.
292 CW Menke-van der Houven van Oordt, C Gomez-Roca, C van Herpen, et al. First-in-human phase I clinical trial of RG7356, an anti-CD44 humanized antibody, in patients with advanced, CD44-expressing solid tumors. Oncotarget. 2016;7(48):80046-80058.
293 L Gong, H Zhou, S Zhang, et al. CD44-targeting drug delivery system of exosomes loading forsythiaside a combats liver fibrosis via regulating NLRP3-mediated pyroptosis. Adv Healthc Mater. 2023;12(11):e2202228.
294 DL Schonberg, TE Miller, Q Wu, et al. Preferential iron trafficking characterizes glioblastoma stem-like cells. Cancer Cell. 2015;28(4):441-455.
295 TA Mace, R Shakya, JR Pitarresi, et al. IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer. Gut. 2018;67(2):320-332.
296 T Nanbu, N Umemura, E Ohkoshi, K Nanbu, H Sakagami, J Shimada. Combined SN-38 and gefitinib treatment promotes CD44 degradation in head and neck squamous cell carcinoma cells. Oncol Rep. 2018;39(1):367-375.
PDF

Accesses

Citations

Detail

Sections
Recommended

/