Lipopolysaccharide released from gut activates pyroptosis of macrophages via Caspase 11-Gasdermin D pathway in systemic lupus erythematosus

Yue Xin1,2,3, Changxing Gao1,2,3, Lai Wang1,2,3, Qianmei Liu1,2,3, Qianjin Lu1,2,3,4()

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (6) : e610. DOI: 10.1002/mco2.610
ORIGINAL ARTICLE

Lipopolysaccharide released from gut activates pyroptosis of macrophages via Caspase 11-Gasdermin D pathway in systemic lupus erythematosus

  • Yue Xin1,2,3, Changxing Gao1,2,3, Lai Wang1,2,3, Qianmei Liu1,2,3, Qianjin Lu1,2,3,4()
Author information +
History +

Abstract

Noncanonical pyroptosis is triggered by Caspase 4/5/11, which cleaves Gasdermin D (GSDMD), leading to cell lysis. While GSDMD has been studied previously in systemic lupus erythematosus (SLE), the role of pyroptosis in SLE pathogenesis remains unclear and contentious, with limited understanding of Caspase 11-mediated pyroptosis in this condition. In this study, we explored the level of Caspase 11-mediated pyroptosis in SLE, identifying both the upstream pathways and the interaction between pyroptosis and adaptive immune responses. We observed increased Caspase 5/11 and GSDMD-dependent pyroptosis in the macrophages/monocytes of both lupus patients and mice. We identified serum lipopolysaccharide (LPS), released from the gut due to a compromised gut barrier, as the signal that triggers Caspase 11 activation in MRL/lpr mice. We further discovered that pyroptotic macrophages promote the differentiation of mature B cells independently of T cells. Additionally, inhibiting Caspase 11 and preventing LPS leakage proved effective in improving lupus symptoms in MRL/lpr mice. These findings suggest that elevated serum LPS, resulting from a damaged gut barrier, induces Caspase 11/GSDMD-mediated pyroptosis, which in turn promotes B cell differentiation and enhances autoimmune responses in SLE. Thus, targeting Caspase 11 could be a viable therapeutic strategy for SLE.

Keywords

Caspase 11 / Gasdermin D / lipopolysaccharide / pyroptosis / systemic lupus erythematosus / wedelolactone

Cite this article

Download citation ▾
Yue Xin, Changxing Gao, Lai Wang, Qianmei Liu, Qianjin Lu. Lipopolysaccharide released from gut activates pyroptosis of macrophages via Caspase 11-Gasdermin D pathway in systemic lupus erythematosus. MedComm, 2024, 5(6): e610 https://doi.org/10.1002/mco2.610

References

1 GC Tsokos. Systemic lupus erythematosus. New Engl J Med. 2011;365(22):2110-2121. doi:
2 X Yin, K Kim, H Suetsugu, et al. Meta-analysis of 208370 East Asians identifies 113 susceptibility loci for systemic lupus erythematosus. Ann Rheum Dis. 2021;80(5):632-640. doi:
3 MD Catalina, KA Owen, AC Labonte, AC Grammer, PE Lipsky. The pathogenesis of systemic lupus erythematosus: harnessing big data to understand the molecular basis of lupus. J Autoimmun. 2020;110:102359. doi:
4 SV Parikh, S Almaani, S Brodsky, BH Rovin. Update on lupus nephritis: core curriculum 2020. Am J Kidney Dis. 2020;76(2):265-281. doi:
5 GC Tsokos, MS Lo, P Costa Reis, KE Sullivan. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol. 2016;12(12):716-730. doi:
6 Y Kato, J Park, H Takamatsu, et al. Apoptosis-derived membrane vesicles drive the cGAS-STING pathway and enhance type I IFN production in systemic lupus erythematosus. Ann Rheum Dis. 2018;77(10):1507-1515. doi:
7 EY Chung, SJ Kim, XJ Ma. Regulation of cytokine production during phagocytosis of apoptotic cells. Cell Res. 2006;16(2):154-161. doi:
8 P Li, M Jiang, K Li, et al. Glutathione peroxidase 4-regulated neutrophil ferroptosis induces systemic autoimmunity. Nat Immunol. 2021;22(9):1107-1117. doi:
9 J Shi, Y Zhao, K Wang, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660-665. doi:
10 N Kayagaki, IB Stowe, BL Lee, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526(7575):666-671. doi:
11 CL Evavold, I Hafner-Bratkovi?, P Devant, et al. Control of gasdermin D oligomerization and pyroptosis by the ragulator-Rag-mTORC1 pathway. Cell. 2021;184(17):4495-4511. doi:
12 J Ding, K Wang, W Liu, et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature. 2016;535(7610):111-116. doi:
13 X Liu, Z Zhang, J Ruan, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535(7610):153-158. doi:
14 X Wang, LP Blanco, C Carmona-Rivera, et al. Effects of Gasdermin D in modulating murine lupus and its associated organ damage. Arthritis Rheumatol. 2020;72(12):2118-2129. doi:
15 L Zhuang, X Luo, S Wu, et al. Disulfiram alleviates pristane-induced lupus via inhibiting GSDMD-mediated pyroptosis. Cell Death Discov. 2022;8(1):379. doi:
16 R Fu, C Guo, S Wang, et al. Podocyte activation of NLRP3 inflammasomes contributes to the development of proteinuria in lupus nephritis. Arthritis Rheumatol. 2017;69(8):1636-1646. doi:
17 J Yu, S Li, J Qi, et al. Cleavage of GSDME by caspase-3 determines lobaplatin-induced pyroptosis in colon cancer cells. Cell Death Dis. 2019;10(3):193. doi:
18 P Xu, C Tao, Y Zhu, et al. TAK1 mediates neuronal pyroptosis in early brain injury after subarachnoid hemorrhage. J Neuroinflamm. 2021;18(1):188. doi:
19 S Wang, M Miura, YK Jung, H Zhu, E Li, J Yuan. Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell. 1998;92(4):501-509. doi:
20 M Kobori, Z Yang, D Gong, et al. Wedelolactone suppresses LPS-induced caspase-11 expression by directly inhibiting the IKK complex. Cell Death Differ. 2004;11(1):123-130. doi:
21 J Shi, Y Zhao, Y Wang, et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature. 2014;514(7521):187-192. doi:
22 M Deng, Y Tang, W Li, et al. The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis. Immunity. 2018;49(4):740-753. doi:
23 J Cheng, Z Wei, X Liu, et al. The role of intestinal mucosa injury induced by intra-abdominal hypertension in the development of abdominal compartment syndrome and multiple organ dysfunction syndrome. Crit Care (London, England). 2013;17(6):R283. doi:
24 N Miao, Z Wang, Q Wang, et al. Oxidized mitochondrial DNA induces gasdermin D oligomerization in systemic lupus erythematosus. Nat Commun. 2023;14(1):872. doi:
25 J Shi, W Gao, F Shao. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci. 2017;42(4):245-254. doi:
26 NM Ha, NQ Hop, NT Son. Wedelolactone: a molecule of interests. Fitoterapia. 2023;164:105355. doi:
27 Y Li, HF Wang, X Li, et al. Disordered intestinal microbes are associated with the activity of systemic lupus erythematosus. Clin Sci. 2019;133(7):821-838. doi:
28 TA van der Meulen, HJM Harmsen, AV Vila, et al. Shared gut, but distinct oral microbiota composition in primary Sj?gren's syndrome and systemic lupus erythematosus. J Autoimmun. 2019;97:77-87. doi:
29 A Hevia, C Milani, P López, et al. Intestinal dysbiosis associated with systemic lupus erythematosus. mBio. 2014;5(5):e01548-14. doi:
30 Z He, T Shao, H Li, Z Xie, C Wen. Alterations of the gut microbiome in Chinese patients with systemic lupus erythematosus. Gut Pathog. 2016;8:64. doi:
31 XM Luo, MR Edwards, Q Mu, et al. Gut microbiota in human systemic lupus erythematosus and a mouse model of lupus. Appl Environ Microbiol. 2018;84(4). doi:
32 D Azzouz, A Omarbekova, A Heguy, et al. Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal. Ann Rheum Dis. 2019;78(7):947-956. doi:
33 C Huang, P Yi, M Zhu, et al. Safety and efficacy of fecal microbiota transplantation for treatment of systemic lupus erythematosus: an EXPLORER trial. J Autoimmun. 2022;130:102844. doi:
34 HM Kim, YM Kim. HMGB1: lPS delivery vehicle for caspase-11-mediated pyroptosis. Immunity. 2018;49(4):582-584. doi:
35 HA, Austin, LR Muenz, KM Joyce, TT Antonovych, JE Balow. Diffuse proliferative lupus nephritis: identification of specific pathologic features affecting renal outcome. Kidney Int. 1984;25(4):689-695. doi:
PDF

Accesses

Citations

Detail

Sections
Recommended

/