2025-04-14 2014, Volume 29 Issue 1

  • Select all
  • Xirui Lu , Faqin Dong , Gongbao Song , Ning Liu , Xiaoli Wang , Yanlin Wu

    Pyrochlore Gd2Zr2O7 are considered as an excellent candidate for treatment of radioactive waste forms, because of its superior physical, chemical and anti-irradiation properties. To investigate the phase and structure of pyrochlore Gd2Zr2O7 used for immobilizing Pu (III), trivalent europium was used as the simulacrum for plutonium with trivalence. The compounds of stoichiometry Gd2−xEu xZr2O7 (0.0 ⩽ x ⩽ 2.0) synthesized by high temperature solid state reaction method, were analyzed with the help of XRD and Rietveld structural refinement method. The results indicated that the phases of compounds continuously kept the phase of pyrochlore under our experimental condition. The linear relation between a and x was discovered in the system of Gd2−xEu xZr2O7 (0.0 ≤ x ≤ 2.0) at 1 773 K, which accorded with a = 10.538 41 + 0.008 95 x, V = 1 170.373 32 + 2.985 97 x.

  • Lixin Xuan , Yong Liu , Zhaofeng Chen

    The mechanical properties of silica material in the monolithic form are far from acceptable levels. In this paper, 3D stitched quartz preform was used for the fiber reinforcement, and quartz fibers-reinforced silica composites were prepared by the silica sol-infiltration-sintering method. The density of the composite was up to 1.71 g/cm3 after 10 infiltration-sintering cycles. The flexural strength and the in-plane shear strength were 61.7 MPa and 20.3 MPa, respectively. The flexural stress-deflection curve exhibited mostly nonlinear behavior, which was different from that of monolithic ceramics. Because of the existence of the fiber in Z axis direction, shearing property between the different layers of 3D stitched composites were greatly enhanced. Toughness effect of the 3D stitched quartz preform was conspicuous. The as-fabricated composites showed non-catastrophic failure behavior resulting from weak fiber/matrix interface.

  • Changgui Lin , Zhuobin Li , Shaoxuan Gu , Haizheng Tao , Shixun Dai , Qiuhua Nie

    A 488 nm continuous wave (CW) laser was employed in Raman spectrometer to both induce and characterize phase transformation in chalcogenide glasses. Laser-induced Raman inactive changes, structural evolution, and crystallization were observed at laser-irradiated region in GeS2-Sb2S3 glasses. The composition dependence of laser-induced phase transformation was discussed in terms of thermal stability and microstructural modification. It is strongly suggested from these results that fabrication of passive and active chalcogenide glass waveguides, such as refractive index change and nonlinear optical crystal line, is controllable by selecting appropriate glass composition, and convenient by using common CW lasers.

  • Yanhong Li , Haiyan Lu , Guoyi Song , Xing’ao Zhang

    A series of Er3+, Tm3+ and Yb3+ doped Gd3Ga5O12 nanocrystals were prepared by a combustion method. The X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and upconversion (UC) emission spectra were used to characterize the samples. The results of XRD indicate that Gd3Ga5O12: Er3+, Tm3+, Yb3+ nanocrystals with cubic phase can be obtained. Under the excitation of a 980 nm laser, the different rare earth ions doped Gd3Ga5O12 nanocrystals show upconversion luminescence involving the green emission attributed to the 2H11/24I15/2, 4S3/24I15/2 transitions of Er3+ ions, respectively, the red emissions assigned to the 4F9/24I15/2 transitions of Er3+ ions and the 1G43F4 as well as 3F2,33H6 transitions of Tm3+ ions, respectively, the blue emission attributed to 1G43H6 transitions of Tm3+ ions, and the near-infrared assigned to the 3H43H6 transitions of Tm3+ ions. The CIE coordinates for the samples are calculated. The dependence of their upconversion luminescence properties on Yb3+ ion concentration is investigated.

  • Xiaopan Liu , Ang Qiao , Long Wan , Weida Hu , Dongdong Song , Zheng Li , Zhongjie Yin , Ruikun Pan

    The effect of ZrO2 content on the performance of vitrified bond was discussed. The results showed that when the ZrO2 content was less than 2 mol%, Zr4+ could enter into the glassy network as mending nets and agglomeration composition. In this case, with the increasing of ZrO2, the vitrified bond’s bending strength increased and the expansion coefficient decreased. It was also found that the wetting angle between the vitrified bond and diamond got small because Zr4+ was enriched on diamond surface. When ZrO2 content was more than 2 mol%, a part of ZrO2 existing in vitrified bond as ZrO2 particles played the role in nucleating agents and promoting the separation of spodumene. When ZrO2 content was 3 mol%, the bending strength of the vitrified bond reached its maximum of 128 MPa and the wetting angle with the diamond reached its minimum of 37.6°.

  • Guangliang Li , Wei Liang , Jinbo Xue , Yiming Liu , Xingzhong Liang

    TiO2 nanotube (TNT) arrays were fabricated by anodic oxidation of titanium foil in a fluoridebased solution, on which Cu2O particles were loaded via galvanostatic pulse electrodeposition in cupric acetate solutions in the absence of any other additives. The structure and optical properties of Cu2O-loaded TiO2 nanotube arrays (Cu2O-TNTs) were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV-Vis absorption, and the photoelectrochemical performance was measured using an electrochemical work station with a three-electrode configuration. The results show that the Cu2O particles distribute uniformly on the highly ordered anatase TiO2 nanotube arrays. The morphologies of Cu2O crystals change from branched, truncated octahedrons to dispersive single octahedrons with increasing deposition current densities. The Cu2OTNTs exhibited remarkable visible light responses with obvious visible light absorption and greatly enhanced visible light photoelectrochemical performance. The I–V characteristics under visible light irradiation show a distinct plateau in the region between approximately −0.3 and 0 V, resulting in higher open-circuit voltages and larger short-circuit currents with increased Cu2O deposition.

  • Qinghua Lu , Kun Liu , Baizhen Chen , Yuehua Hu

    Bauxite-tailings is aluminosilicate wastes and is used in polymer as fillers. But its intrinsic low-whiteness has limited its large-scale application in polymeric materials. Conventional methods for whitening bauxite-tailings were ineffective. A new method, which involved reactions with phosphoric acid and calcinations, was proposed to whiten bauxite-tailings. Two process routes were employed to whiten bauxitetailings, which were pre- and post-reaction calcination. While the process of pre-reaction calcination was able to achieve a whiteness of 87% from bauxite-tailings, it required high-energy post-treatment processes such as washing, milling and drying. The process of post-reaction calcination, on the other hand, resulted in an increase in whiteness of bauxite-tailings from 19% to 73%. This was achieved using 4.5% of added phosphorous, 40% acid concentration, reaction time of 2.5 hours and a calcination temperature of 600 °C. The resultant did not require any further processing, and was therefore industrially feasible. The whitened tailings consisted of corundum, anatase, and quartz. When compared to calcined tailings, whitened tailings possessed a higher content of amorphous material, the disappearance of red iron minerals, and the emergence of a new phase of AlPO4.

  • Jinhua Li , Rui Weng

    We put forward a large-area and cost-effective method to fabricate superhydrophobic coating by introducing in-situ functionalized nano-SiO2 into side-amino modified hydroxy-terminated polydimethylsiloxane (SA-HTPDMS) curing system. With the characterization using water contact angle (WCA) tester, Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), atomic force microscopy (AFM) and simultaneous thermal analysis, the as-prepared coating displayed a tremendous WCA of 154.8±1°, sliding angle (SA) about 3.5° and stable self-cleaning property range from −10 to 80 °C. It was also found that the synergistic effect of surface micro-nano hierarchical structure and chemical hydrophobicity, stability from matrix had made contributions to the superhydrophobicity and excellent heat resistance up to 300 °C.

  • Xuanmin Zhu , Xiao Ma , Haimei Chang , Haizheng Tao , Xiujian Zhao

    Mono-disperse silver nanoparticles with tunable morphologies have been fabricated by reducing AgNO3 in the presence of N-dimethylformamide (DMF) and larger molecular weight poly (vinylpyrrolidone) (PVP). By adjusting the reaction temperature, the conversion of the morphology can be easily and effectively controlled. The crystal structures and growth mechanism of mono-disperse silver nanoparticles were studied by using TEM, HR-TEM, FFT, XRD and UV-Vis spectra data. The results show that the morphologies of nanoparticles with spherical shape can be adjusted to a truncated triangle/hexagon along with the change of reaction temperature from 80 to 120 °C. It is found that the shape transformation from sphere to truncated triangle is caused by the difference in surface energy and the selective adsorption of PVP on silver atom.

  • Qingsheng Xu , Yanjuan Zhu , Quanyong Han , Jie Luo , Chengcheng Miao , Wei Zhang , Chunhua Zhang

    The nano-nickel hydroxide samples were prepared by means of ultrasonic-assisted precipitation and the impact of source/doping element/buffer on the structure of Ni(OH)2 was studied. The results of XRD, IR and TEM testing clearly revealed that larger anionic radius of the nickel sources or the buffer solution was conducive to the formation of α-Ni(OH)2. The proportion of α-Ni(OH)2 samples doped with two elements was larger than that doped with single element. Additionally, speciation, valence as well as the radius of doping ions can directly affect the phase of Ni(OH)2.

  • Dahua Ren , Xinyou An , Xinlu Cheng , Xuan Luo , Ruizhuang Yang , Zhen Zahng , Weidong Wu

    First-principles pseudopotential calculations are performed to investigate the phase transition and elastic properties of niobium nitrides (NbN). The lattice parameters a 0 and c 0/a 0, elastic constants C ij, bulk modulus B 0, and the pressure derivative of bulk modulus B 0′ are calculated. The results are in good agreement with numerous experimental and theoretical data. The enthalpy calculations predict that NbN undergoes phase transition from NaCl-type to NiAs-type structure at 13.4 GPa with a volume collapse of about 4.0% and from AsNi-type to CW-type structure at 26.5 GPa with a volume collapse of about 7.0%. Among the four types of structures, CW-type is the most stable structure. The elastic properties are analyzed on the basis of the calculated elastic constants. Isotropic wave velocities and anisotropic elasticity of NbN are studied in detail. The longitudinal and shear-wave velocities, V P, V S and V m increase with increasing pressure, respectively. The Debye temperature Θ D increases monotonically with increasing pressure except for NiAs-type structure. Both the longitudinal velocity and the shear-wave velocity increase with pressure for wave vector along all the propagation directions, except for V TA([100]) and V TA[001]([110]) with NaCl structure and V TA[010]([100]) with the other three types of structures.

  • Ming Liu , Hongqing Zhou , Haikui Zhu , Zhenxing Yue , Jianxin Zhao

    The effects of the introduction of silica glass and silica ceramic into Ca-Al-B-Si-O glass/ Al2O3 composites on decreasing the shrinkage and the dielectric constant of samples were investigated by FTIR, DSC, XRD and SEM. The results show that silica ceramic filler can better improve the formation of Si-O-Si network in the composites under high temperature, which leads to increased continuity of glass network at high temperature, and deduces the increase of viscosity of composites and further results in the decrease in the shrinkage of samples. Densification, three-point strength, and dielectric constant of samples decrease with the increase of silica glass or silica ceramic content. By contrast, Ca-Al-B-Si-O glass/Al2O3 composites with 4 wt% silica ceramic exhibit better properties of a bulk density of 2.81 g·cm−3, a porosity of 0.3%, a 3dp value of 202 MPa, a ɛ r value of 7.41, a tan δ value of 8.3×10−4 at 10 MHz and a well matching with Ag electrodes. This material is suitable to be used as the LTCC material for the application in wireless communications.

  • Zhihao Wang , Zhifeng Huang , Fei Chen , Qiang Shen , Lianmeng Zhang

    The surface passivation mechanism of nanocrystalline silicon powder was studied. The liquid nitrogen/argon was used as the medium to prepare the nanocrystalline silicon powder, using a cryomilling technology. The X-ray diffraction, transmission electron microscopy, plasma emission spectroscopy and infrared spectrum were used to analyze the prepared samples, and density functional theory was used to investigate the cryomilling process. For nanocrystalline silicon powder cryomilled with liquid N2, the amorphous outer layer with N element is formed on the surface, and chemisorption caused by the formation of Si-N-Si bond leads to the surface passivation, although physisorption also be confirmed, the Si-N bond is steady after exploded in air for 30 days and no new bond is observed. For nanocrystalline silicon powder cryomilled with liquid Ar, no new chemical bond is observed, Ar element absorbs on the surface of the prepared powder only through physisorption, and after exploded in air for 30 days, a Si-O bond can be observed obviously.

  • Zhen He , Huamei Yang , Meiyan Liu

    The feasibility of sulphoaluminate cement (SAC) utilization in support mortar was studied. Setting time and strength of as-received sulphoaluminate cement (SAC) paste were examined, hydration kinetics behavior was determined through Isothermal Calorimeter, and hydration mechanism was investigated by X-Ray diffraction analysis (XRD) and field emission scanning electron microscopy analysis (FSEM). Results showed that as-received SAC contained 61% of anhydrous calcium sulfate (3CA·CaSO4) and dicalcium silicate (C2S). The strength after 1 day or 3 days grew to 68.6% or 85.7% of that after 28 days respectively, while most of hydration heat was released within 1 day. The emergency of three exothermic peaks at acceleration stage was found and hydration kinetics model was established choosing the terminal time of the first exothermic peak at accelerating stage as the beginning of accelerating stage. XRD analysis suggested that large amount of ettringite (AFt) was produced at early age and FSEM observation revealed that ettringite (AFt) formed in sulphoaluminate cement (SAC) paste was characterized of different morphology which was proved to be caused by different ion concentrations.

  • Jun Liu , Yao Li , Yuanquan Yang , Yunpeng Cui

    By analyzing the mechanical properties, composition of hydrates, content of Ca(OH)2 and microstructure of the complex binder of silica fume-Portland cement, which cured at constant low temperatures(+5-−10 °C), the effect of different low temperatures on hydration performance of the complex binder at the age of 3, 7 days and 14 days was researched. Experimental results show that hydration processes of the complex binder can be restricted by low temperature. Reducing the curing temperature could cause compressive strength and flexural strength of the complex binder to decrease significantly. The gradient difference between strength diminishes, content of Ca(OH)2 in hydrates reduces, and compactness of the microstructure weakens. Therefore mixing with silica fume can modify various performance indicators of the complex blinder, but reducing the curing temperature restricts the pozzolanic activity of silicon fume.

  • Baomin Wang , Yuan Zhang , Hainan Ma

    The dispersion effect of carbon nanofibers (CNFs) in aqueous solution and the mechanical properties, porosity, pore size distribution and microstructure of CNFs reinforced cement-based composites were investigated in this paper. To achieve effective dispersion of CNFs, a method utilizing ultrasonic processing and a commercially surfactant were employed. CNFs were incorporated to cementitious materials with the addition of 0.1 wt% and 0.2 wt% of cement with a water/cement ratio of 0.35. The mechanical properties of CNFs/cement composites were analyzed, the porosity and pore size distribution were characterized by 1H low field nuclear magnetic resonance (NMR), and the microstructure was observed by scanning electron microscopy (SEM). The results indicate that the optimum concentration ratio of MC to CNFs is 2:1 for dispersing in aqueous solution. Moreover, in the field of mechanical properties, CNFs can improve the flexural strength and compressive strength. The increased mechanical properties and the decreased porosity of the matrices correspond to the increasing CNFs content and CNFs act as bridges and networks across cracks and voids.

  • Ping Chen , Zhibo Li , Rongjin Liu , Weiheng Xiang , Aixiang Qi

    The current research focused on adjusting the low hydration activity of the metallurgical slag by phase reconstruction technique. Boron oxide was used as a phase regulator to improve the amorphous phase composition of the manganese slag, consequently enhancing its hydraulic activity. The effects of boron oxide dosage and calcination temperature on the manganese slag amorphous phase content were investigated. XRD and DTG were performed to analyze the hydration mechanism of the manganese slag powder and cement. Results show that, when boron oxide dosage is 15%, calcination temperature is 1 300 °C, and holding time for 1 hour, the amorphous content of the modified manganese slag reaches 95% and its 28-day activity index reaches 81.7%. The manganese slag powder can then be used as cement or concrete admixtures for the building materials industry.

  • Yuanming Song , Jueshi Qian , Jingxiang Liu , Bo Wang , Yingchun Wei

    Circulating fluidized bed combustion (CFBC) ash can be used as supplementary cementitious material for concrete production for its high pozzolanic activity. We investigated the effect of curing conditions on the hydration and performance of CFBC ash-Portland cement system (30: 70, by mass) including hydration products, paste microstructure, linear expansion ratio, chemically combined water content and compressive strength. The results show that tobermorite rather than ettringite is generated under the condition of autoclaved curing. The expansion and mortar strength of the system cured in water is higher than those cured in air at a given age, and the strength and bulk volume may retract under the condition of air curing. In addition, autoclaved curing facilitates the increase of strength gain at early curing ages (the increase rate lowers down in the following ages) and the improvement of system volume stability. It is suggested that sufficient water is necessary for the curing of CFBC ash cementitious system, and autoclaved curing may be considered where volume stability is a primary concern.

  • Haining Geng , Ping Duan , Wei Chen , Zhonghe Shui

    The increasing importance of the ecologically minded production of building materials makes it necessary to develop reasonable alternatives to the CO2-intense production of ordinary Portland cement (OPC). The development of new or modified concrete is an important part of existing strategies to improve performance and minimize life-cycle costs. Therefore, we investigated carbonation resistance properties of sulphoaluminate cement (SAC) concrete incorporating layered double hydroxides (LDHs). X-ray diffraction (XRD) and IR-spectroscopy were employed to characterize the component and structural changes of LDHs and cement paste before and after carbonation test. Carbonation resistance of concrete was experimentally evaluated. Finally, carbonation of Portland cement and SAC concrete was compared. The experimental results show that carbonation depth decreases remarkably with the addition of LDHs, especially the calcinated LDHs. Carbonation depth of SAC concrete is smaller than that of PC concrete regardless of curing time.

  • Tian’en Yang , Lan Sun , Ji Xiong , Zhixing Guo , Xiaoming Zheng

    Gradient cemented carbides with nano-TiN were prepared by the common powder metallurgical procedure. The formation of gradient zone and the microstructure, properties of the alloys were investigated using scanning electron microscope(SEM), energy dispersive spectroscopy(EDS) and other performance testing apparatus. Moreover, the effect of nano-TiN on the gradient cemented carbide was studied. It is found that gradient zone width increases slightly with nano-TiN introduction. Both cobalt and titanium concentrations reach the maximum near the gradient border. Tungsten concentration shows fluctuation from the surface to the bulk. (Ti,W)C phase grains are refined for nitrogen introduction. Core-rim structure has been observed under the SEM back-scattered mode. The core appears as dark due to more titanium in it and the rim with more tungsten appears as grey. In addition, the hardness and transverse rupture strength of gradient cemented carbide are enhanced with nano-TiN introduced.

  • Sha Ding , Zhonghe Shui , Wei Chen , Jianxin Lu , Sufang Tian

    Supersulphated phosphogysum-slag cement (SSC) is a newly developed non-burned cementitious material mainly composed of phosphogysum (PG) and ground granulated blast furnace slag (GGBFS), with small amount of steel slag (SS) and clinker (CL). SSC is a kind of environmentally-friendly cementitious material due to its energy-saving, low-carbon emission, and waste-utilization. We prepared concretes with supersulphated phosphogysum-slag cement, and studied the mechanical properties, microproperties and resistance to chloride penetration of concrete in comparison with those of portland slag cement (PSC) and ordinary portland cement (OPC) concrete. The test results show that the compressive strength of SSC concrete can reach 38.6 MPa after 28 d, close to PSC concrete and OPC concrete. Microanalyses indicate that large quantities of ettringite and C-S-H, and little amount of Ca(OH)2 are generated during the hydration of SSC. The dense cement paste structure of SSC is formed by ettringite and C-S-H, surrounded unreacted phosphogysum. The property of resistance to chloride penetration of SSC concrete is better than PSC and OPC concrete due to the fact that SSC can form much more ettringite to solidify more Cl.

  • Jing Wen , Hongfa Yu , Ying Li , Chengyou Wu , Jinmei Dong

    In order to make full use of salt lake magnesium resources and improve the strength of the thermal decomposed magnesium oxychloride cement (TDMOC), the effects of citric acid on the hydration process and mechanical properties of TDMOC was studied. The hydration heat release at initial 24 h and strengths at 3, 7, and 28 days of TDMOC specimens were conducted. The hydration products and paste microstructure were analyzed by XRD, FT-IR and SEM, respectively. The results showed that citric acid can not only reduce the 24 h hydration heat release and delay the occurring time of second peak of TDMOC, but also produce more 5Mg(OH)2·MgCl2·8H2O and less Mg(OH)2 in hydration process of TDMOC. More perfect and slender crystals were observed in the microstructure of the TDMOC pastes with citric acid. The results demonstrated that citric acid as an additive of TDMOC can decrease the hydration heat release and increase the compressive strength and flexural strength of TDMOC. The possible mechanism for the strength enhancement was discussed.

  • Jinzhi Xu , Peiwen Hao

    By indirect tensile strength (ITS) test and unconfined compressive strength (UCS) test, the influence of various material related parameters, including asphalt foamability, aggregate temperature, mixing moisture content (MMC) and foamed asphalt (FA) content, on the mechanical properties of FA mixes was studied. The results indicated that both asphalt foamability and aggregate temperature greatly affected ITS of FA mixes. Too low aggregate temperature was unfavorable for mechanical properties of FA mixes. Foamed index alone was unfit for the evaluation of asphalt foamability. Compared with half-life, expansion ratio had more prominent influence on ITS of FA mixes. MMC had significant impact on the mechanical properties of FA mixes and should be optimized by trial and test in FA mix design. The mechanical properties of FA mix were sensitive to the change of FA content. Compared with the ITS determined with standard Marshall specimens, both the ITS and UCS determined with static compressed specimens by 15 cm diameter were more effective in terms of choosing the optimal asphalt content for FA mixes.

  • Dongli Sun , Tao Sun , Qing Wang , Xiuli Han , Qiang Guo , Gaohui Wu

    Ti2AlN/TiAl composites with different volume fractions of reinforcement were successfully fabricated by hot-pressing sintering method (reaction hot pressing) using Ti, Al and TiN powders as starting materials. The synthesis process includes four stages: first, the reactions between Al and Ti powers and between Al and TiN powders respectively occur and result in TiAl3 phase; secondly, Al powders in the sample are exhausted; the remaining Ti cores react with TiAl3 layer to form Ti-Al intermetallics; moreover, a few Ti2AlN particles precipitate from the TiAl3 phase; thirdly, Ti-Al intermetallics react with the remaining Ti cores to form Ti3Al and TiAl phases. TiAl phase and original TiN powers are in direct contact each other; finally, the residual TiN powers react with TiAl phase and result in a plenty of Ti2AlN phase. Compared with TiAl matrix, the hardness, elastic modulus and high-temperature compressive strength of Ti2AlN/TiAl composite are improved obviously and they are all enhanced with increasing the volume fraction of Ti2AlN phase.

  • J. Brnic , G. Turkalj , Jitai Niu , M. Canadija , D. Lanc

    This paper presents experimentally-obtained data which can be of importance in the design procedure of engineering components made of 1.4057 (X17CrNi16-2; AISI 431) steel. In this manner, uniaxialy tests related to determine material mechanical properties and short-time creep behavior were performed. Based on the mentioned tests, ultimate tensile strength, 0.2 offset yield strength and modulus of elasticity at low and elevated temperatures were determined. Also, creep behavior of considered steel was tested for selected temperatures and selected stress levels. According to experimentally determined Charpy impact energy an assessment of fracture toughness was made.

  • Xiaohong Yao , Huidan Huo , Mingdong Bao , Linhai Tian

    ZrN/Zr-N/Zr coatings were deposited on H13 steel by close field unbalanced magnetron sputtering ion plating (CFUBMSIP) technique. The effect of two main parameters such as OEM and bias voltage for the CFUBMSIP process on the microstructure, mechanical properties and impact fatigue behavior of the coatings was investigated. The results indicate that with OEM increasing from 55% to 65% the surface particles size of the coatings increases while it remains almost similar when the bias voltage changes from 60 to 75 V. An aggregation of the particles occurs on the coatings surface with further increasing the OEM and bias voltage to 75% and 90 V, respectively. The coatings show a columnar grain structure and are mainly composed of two phases of ZrN and Zr. The coating hardness decreases with OEM value increasing and both the coating hardness and modulus go up with bias voltage. The coating deposited under OEM of 65% and bias voltage of 75 V shows the best impact fatigue property.

  • Yongnan Chen , Jiao Wang , Jianfeng Wei , Yongqing Zhao

    The semi-solid deformation behavior of Ti14 was investigated using compression tests at deformation temperatures between 1 273 and 1 423 K with strain rate of 5×10−2 s−1. Moreover, the fraction solid at different temperatures was also measured by image analysis. The results showed that the deformation temperature had strong effects on the flow stress, and the stress increased with the decrease of deformation temperature. The maximum stress depended greatly on the fraction solid, and a sharp decrease in stress occurred at a solid fraction between 0.94 and 0.98 (temperature from 1 323 to 1 373 K). This decrease was related to the decrease in the amount of solid bridges between grains. Because of the partial solid/liquid segregation during deformation, the experimental strain rates were much lower than those calculated by the flow of liquid incorporating solid particles, which suggested that the main deformation mechanism between 1 323 and 1 373 K was still plastic deformation of solid particles.

  • Zhiyuan Xiong , Dafeng Jin , Yongbao Yang , Duo Zeng

    Due to its high packaging strain and shape memory effect, elastic memory composite (EMC) has considerable potential application in future deployable space structures. Buckling of the reinforcing fibers is the primary deformation mechanism of such a new class of functional materials to realize a higher folding strain than that of conventional fiber reinforced composites. In this paper, the orientation of buckling direction of the reinforcing fibers in EMC laminate will be theoretically analyzed to better understand such deformation mechanism. The results reveal that the bucking protruding from the edge produces the lower energy needed for EMC laminate.

  • Yanping Guo , Mingang Zhang , Yaxu Jin

    The effects of SrCO3 on the microstructure of AZ91 magnesium alloy were investigated by OM, SEM, EDS, XRD and DTA analyses. The results show that AZ91 magnesium alloy with 1.0% SrCO3 addition has the best refining effect at 730 ° for 20 min, the average size of the α-Mg grain in AZ91 matrix alloy is reduced from about 91 μm to 58 μm, with reduction of about 36%. Based on the analysis results of EDS, binding energy, and Gibbs free energy, it is evident that the grain is refined because of the generation of A14C3 particles which can be used as the crystal nucleus of the magnesium alloy when SrCO3 is added. Owing to the generation of A14C3 in AZ91 magnesium alloy, the grain boundary is pined and the grain growth is inhibited. In the accession to the Al4C3, small subcooling temperature difference leads to the formation of fine grain microstructure in alloy melt. Fine grain microstructure in AZ91 alloy melt with the addition of SrCO3 can be obtained on the condition of lower undercooling temperature according to the DTA analysis results.

  • Qingfeng Wan , Miao Tian , Lin Chen , Bing Zhao

    Effect of different dopants and various dopants quantity at different annealing temperatures on microstructure of tantalum wire, bending of tantalum wire after sintering and bending after pressing into tantalum powder and sintering were investigated through observation of microstructure and testing of bending of tantalum wire after sintering and bending after pressing into tantalum powder and sintering. The results show that the recrystallization temperature of tantalum wire increases and the grain of microstructure can be reduced with the increase of dopants quantity. At the same time, the effect of dopant Ce on reduction of the grain is more obvious than that of dopant Ge. The bending time of tantalum wire after sintering increases with the increase of dopant Ge or Ce quantity. Under the same condition, the bending time of tantalum wire after pressing into tantalum powder and sintering worsens with the increase of oxygen content in tantalum powder. The bending time of tantalum wire doped with Ge and Ce after pressing into tantalum powder and sintering is better than that of tantalum wire doped with Ge, while that of tantalum wire doped with Ge is better than that of pure one when oxygen content in tantalum powder is not too high.

  • Jie Sheng , Junchen Li

    Simulation method was designed to divide Laguerre diagram for right circle group with different weight; out-of-core incremental algorithm for Laguerre diagram was constructed; simulation program development and visualization was done and simulation was realized in user-specified arbitrary area for simulation of metal materials microstructure, which facilitated the practical application and secondary development of Laguerre diagram in the field of material science engineering. Finally, the utilization of a developed software package exemplified the simulation application of microstructure about metal materials and proved its validity.

  • Jing Lan , Yang Cheng , Zongshan Zhao

    In this paper, magnetic nanospheres coated with polystyrene (Fe3O4@PS) were prepared for the removal of organochlorine pesticides from aqueous solutions. The obtained Fe3O4@PS was round shape with diameter of 55±11 nm. The VSM results illustrated that its higher saturated magnetization was 36.76 emu g−1 and it could be easily separated from aqueous solutions with a permanent magnet. The adsorption results showed that pesticides could be effectively adsorbed and the adsorption equilibrium time was less than 20 mins. The pseudo-second-order model was suitable to describe the adsorption kinetics. Compared with the Freundlich adsorption model, the adsorption data fitted well with Langmuir model. The effect of salinity and humic acid was also studied and the results illustrated that they could be neglected under optimized conditions. The asobtained sorbent showed a good performance with more than 93.3% pesticides removal in treating actual water samples.

  • Zhihua Zhong , Bin Shi

    To search suitable scaffolds for periodontal tissue regeneration, different ratios of tricalcium phosphate/chitosan(TCP/chitosan) scaffolds were prepared through a freeze-drying process. Human periodontal ligament cells(HPLCs) were incubated on the scaffolds in vitro. Cells were cultured on the scaffolds, detected by scanning electron microscopy (SEM). HPLCs were analyzed by MTT assay and alkaline phosphatase(ALP) activity detection. HPLCs were seeded onto the scaffolds. Then these scaffolds with HPLCs were implanted subcutaneously into athymic mice. The state of periodontal tissue regeneration was detected after 4 weeks. As the ratio of TCP increased, TCP/chitosan scaffolds accelerated HPLCs proliferation significantly higher than the pure chitosan scaffold. HPLCs produced the cementoid tissue in vivo. The periodontal tissue regeneration engineering is able to be applied with TCP/chitosan scaffolds.

  • Shanzhou Hu , Peng Liu , Yu Hu

    The plasmid DNA binding and cleavage activities with gold nanoparticles (Au-NPs) were investigated by the integrated tools of UV-vis spectroscopy, atomic force microscopy (AFM), and DNA electrophoresis. The results showed that the absorbance of Au-NPs decreased at 520 nm and a new absorption peak at 570 nm was found, as the DNA concentration increased, which indicated the particle aggregation. AFM experiments showed that DNA-induced particle aggregation originated from the strong interactions between DNA and Au-NPs, that is, the adsorption of DNA onto the Au-NPs surface would result in particle aggregation. After a short period of time, the Au-NPs were easier to aggregate in the presence of the higher concentration of DNA. At the early stage of incubation, the DNA double helix conformation was substantially changed by particles. The electrophoresis manifested the absorption and damage appeared on the native DNA molecules. With a longer treating time, the molecules were broken into fragments. The DNA damage was deemed to be a gradual process. The nonspecific interactions between DNA and Au-NPs resulted in the binding of DNA to the Au-NPs surface. Consequently, not only Au-NPs were aggregated but also DNA was damaged.

  • Zhihai He , Chunxiang Qian , Yi Zhang , Fei Zhao

    In order to determine the active mechanism of metakaolin (MK) as partial replacement of cement in concrete from the nanoscale structure perspective, nanoindentation characteristics of calcium hydroxide (CH)-MK blended with 5 M sodium hydroxide (NaOH) solutions simulating the condition of MK in concrete has been studied. The results indicate that three distinct phases are found by the nanoindentation and BSE tests, such as HD C-S-H gel, LD C-S-H gel and the reaction products with the network structure, the residual unreacted MK and CH, respectively. The volume fraction of HD C-S-H gel is about 96% of all reaction product phases. This means that the use of MK in concrete can increase the volume fraction of HD C-S-H gel and thus will improve the properties of concrete.

  • Muhammad Asif , Zhengyi Fu , Weimin Wang , Hao Wang , Tiening Tan , Shahzad Ahmad Khan

    In the current work hydroxyapatite Ca10(PO4)6·OH2 (HA) was sintered with the addition of 3 wt% aluminum isopropoxide (C9H21AlO3) powder and 3 wt % Teflon powder (-C2F2-). Sample was prepared by following sol-gel technique. Obtained pellets of samples were sintered. For investigation of effects of temperature on microstructures and mechanical properties the samples were sintered at various temperatures. For studying the phase composition, microstructures and elemental analysis the sintered samples were characterized by X-rays diffraction (XRD), scanning electron microscopy(SEM) and energy dispersive X-rays diffraction(EDAX) respectively. After sintering the samples mechanical properties, i e, grains size, apparent density, Vickers hardness, bending strength and compressive strength were found to be 2.14–18.76 μm, 1.523 6–0.752 g/cm3, 3.60–0.600 GPa and bending strength 33.265 8–14.900 MPa, 75–33 MPa, respectively. As a result of sintering fluoridated composite material was obtained.

  • Ling Jiang , Guangchun Jin , Jiyeon Kang , Lingmin Yu , Wookang Yoon , MyungJin Lim , Ilsong Par K , Minho Lee , Dongchun Jin

    Mussel adhesive proteins are non-toxic, biodegradable and have low immunogenic qualities that make them highly attractive for medical purposes compared with man-made materials. 3,4-DOPA, which is a dopamine precursor, is a critical element for achieving mussel-like adhesive properties. In present study, polydopamine was coated onto the titanium surfaces by dipping in a 2 mg/mL dopamine solution in 10 mM Tris-HCl buffer at pH 8.5. EDX element analysis and Raman spectroscopic analysis of the surface were conducted to verify the formation of polydopamine. The surface characteristics of polydopamine-coated titanium plates were observed by SEM and AFM. Hydrophilicity and corrosion-resistance were also evaluated by static contact angle measurements and potentiodynamic polarization corrosion tests. The absorption intensity for pH-induced polymerization rapidly increased for the initial four hours and thereafter smoothly increased. EDX element analyses revealed that the content of carbon and oxygen increased and the content of titanium decreased after the coating process. In the Raman spectra, polydopamine resulted in two new peaks at approximately 1 370 and 1 570 cm−1 resulting from the stretching and deformation of catechol. Microstructural features revealed that nanometer-sized bright granules were randomly distributed after coating, and these nanoparticles grew with increased coating time. The Ra values of polydopamine-coated titanium plates were showed to increase with coating time. Compared to the pure titanium curve, the inflection point of polydopamine-coated titanium was located at a higher corrosion potential and lower corrosion current density. Findings from our research suggested that polydopamine coatings offer a versatile approach for titanium surface modification.

  • Hailong Yang , Xiangming Kong , Yanrong Zhang , Chunchao Wu , Enxiang Cao

    Silica aerogels were prepared from a mixture of tetraethylorthosilicate and organoalkoxysilanes. The effects of organo-alkoxysilanes on the mechanical properties of the silica aerogels were studied. The flexibility of silica aerogels was significantly improved by incorporation of organo-alkoxysilanes. When MTES and TEOS were combined as precursors of silica areogels, with the increased amount of MTES, the apparent elastic modulus and apparent compressive strength monotonously rose. At the same organoalkoxysilanes to TEOS ratio, the size of alkyl groups of the organo-alkoxysilanes had little effect on the mechanical properties. In series of MTES and TEOS, the lowest elastic modulus of silica skeleton and the highest compressive strength of silica skeleton were observed at MTES to TEOS ratio of around 50:50. At a certain organo-alkoxysilanes to TEOS ratio, the elastic modulus of silica skeleton increased and the compressive strength of silica skeleton decreased with the size increase of the alkyl groups.

  • Jingcheng Liu , Licheng Lin , Xiuli Jia , Ren Liu , Shengwen Zhang , Xiaoya Liu

    UV-curable hyperbranched polyurethane (UV-HBPU) containing carboxyl groups was synthesized from isophorone diisocyanate (IPDI), diethanolamine (DEOA), polyethylene glycol (PEG-400), hydroxyethyl acrylate (HEA), and 2,2-bis (hydroxymethyl) propionic acid (DMPA). The UV-HBPU was used as a negative-type photoresist for a printed circuit board (PCB). Fourier-transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1HNMR) spectroscopy of UV-HBPUs indicated that the synthesis was successful. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) showed that the thermal stability of the UV-HBPUs decreased as the HEA content increased. The polymer exhibited excellent photoresist properties, and the resolution of circuits based on this negative-type photoresist reached 10 μm.