Phase transition and elastic properties of NbN under hydrostatic pressure

Dahua Ren , Xinyou An , Xinlu Cheng , Xuan Luo , Ruizhuang Yang , Zhen Zahng , Weidong Wu

Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (1) : 49 -57.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (1) : 49 -57. DOI: 10.1007/s11595-014-0866-y
Advanced Materials

Phase transition and elastic properties of NbN under hydrostatic pressure

Author information +
History +
PDF

Abstract

First-principles pseudopotential calculations are performed to investigate the phase transition and elastic properties of niobium nitrides (NbN). The lattice parameters a 0 and c 0/a 0, elastic constants C ij, bulk modulus B 0, and the pressure derivative of bulk modulus B 0′ are calculated. The results are in good agreement with numerous experimental and theoretical data. The enthalpy calculations predict that NbN undergoes phase transition from NaCl-type to NiAs-type structure at 13.4 GPa with a volume collapse of about 4.0% and from AsNi-type to CW-type structure at 26.5 GPa with a volume collapse of about 7.0%. Among the four types of structures, CW-type is the most stable structure. The elastic properties are analyzed on the basis of the calculated elastic constants. Isotropic wave velocities and anisotropic elasticity of NbN are studied in detail. The longitudinal and shear-wave velocities, V P, V S and V m increase with increasing pressure, respectively. The Debye temperature Θ D increases monotonically with increasing pressure except for NiAs-type structure. Both the longitudinal velocity and the shear-wave velocity increase with pressure for wave vector along all the propagation directions, except for V TA([100]) and V TA[001]([110]) with NaCl structure and V TA[010]([100]) with the other three types of structures.

Keywords

phase transition / elastic properties / isotropic wave velocity / anisotropic elasticity / NbN

Cite this article

Download citation ▾
Dahua Ren, Xinyou An, Xinlu Cheng, Xuan Luo, Ruizhuang Yang, Zhen Zahng, Weidong Wu. Phase transition and elastic properties of NbN under hydrostatic pressure. Journal of Wuhan University of Technology Materials Science Edition, 2014, 29(1): 49-57 DOI:10.1007/s11595-014-0866-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang Z, Terai H, Kawakami A, . Interface and Tunneling Barrier Heights of NbN/AlN/NbN Tunnel Junctions[J]. Appl. Phys. Lett., 1999, 75: 701-703.

[2]

Yamamori H, Ishizaki M, Shoji A, . 10 V Programmable Josephson Voltage Standard Circuits Using NbN/TiNx/NbN/TiNx/NbN Double-Junction Stacks [J]. Appl. Phys. Lett., 2006, 88: 042 503

[3]

Goltsman G, Korneev A, Izbenko V, . Nano-Structured Superconducting Single-Photon Detectors[J]. Nucl. Instrum. Methods Phys. Res. Sect. A, 2004, 520: 527-529.

[4]

Delaet B, Villegier J C, Escoffier W, . Fabrication and Characterization of Ultra-Thin NbN Hot Electron Bolometer for Near Infrared Single Photon Detection[J]. Nucl. Instrum. Methods Phys. Res. Sect. A, 2004, 520: 541-543.

[5]

Slysz W, Wegrzecki M, Bar J, . Fiber-Coupled Single-Photon Detectors Based on NbN Superconducting Nanostructures for Practical Quantum Cryptography and Photon-Correlation Studies [J]. Appl. Phys. Lett., 2006, 88: 261 113

[6]

Suzuki K, Miki S, Wang Z, . Superconducting NbN Thin-Film Nanowire Detectors for Time-of-Flight Mass Spectrometry [J]. J. Low Temp. Phys., 2008, 151: 766-770.

[7]

Toth L E Transition Metal Carbides and Nitrides[M], 1971 New York Academic Press

[8]

Villars P P, Calvert L D Pearson’s Handbook of Crystallographic Data for Intermetallic Phases [M], 1985 OH American Society for Metals

[9]

Guard R W, Savage J W, Swarthout D G Constitution of a Portion of the Niobium (Columbium) Nitrogen System [J]. Trans. Met. Soc. AIME, 1967, 239: 643-649.

[10]

Lengauer W, Bohn M, Wollein B, . Phase Reactions in the Nb-N System Below 1 400 °C[J]. Acta Mater., 2000, 48: 2 633-2 638.

[11]

Ivashchenko V I, Turchi P E A, Olifan E I Phase Stability and Mechanical Properties of Niobium Nitrides [J]. Phys. Rev. B, 2010, 82: 054 109

[12]

Öğüt S, Rabe K M Polymorphism and Metastability in NbN: Structural Predictions from First Principles[J]. Phys. Rev. B, 1995, 52: R8 585-R8 588.

[13]

Isaev E I, Simak S I, Abrikosov I A, . Phonon Related Properties of Transition Metals, Their Carbides, and Nitrides: A First-Principles Study [J]. J. Appl. Phys., 2007, 101: 123 519

[14]

Amriou T, Bouhafs B, Aourag H, . FP-LAPW Investigations of Electronic Structure and Bonding Mechanism of NbC and NbN Compounds [J]. Phys. B, 2003, 325: 46-56.

[15]

Wang C, Wen W, Su Y D, . First-Principles Calculations on the Mechanical Properties of Niobium Nitrides [J]. Solid State Commun., 2009, 149: 725-728.

[16]

Blanco M A, Francisico E, Luaña V GIBBS: Isothermal-Isobaric Thermodynamics of Solids from Energy Curves Using a Quasi-Harmonic Debye Model [J]. Comput. Phys. Commun., 2004, 158: 57-72.

[17]

Vanderbilt D Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism [J]. Phys. Rev. B, 1990, 41: 7 892-7 895.

[18]

Perdew J P, Burke K, Ernzerhof M Generalized Gradient Approximation Made Simple [J]. Phys. Rev. Lett., 1996, 77: 3 865-3 868.

[19]

Pack J D, Monkhorst H J Special Points for Brillouin-Zone Integrations—a Reply [J]. Phys. Rev. B, 1977, 16: 1 748-1 749.

[20]

Segall M D, Lindan P J D, Probert M J, . First-Principles Simulation: Ideas, Illustrations and the CASTEP Code [J]. J. Phys.: Condens. Matter, 2002, 14: 2 717-2 744.

[21]

Milman V, Winkler B, White J A, . Electronic Structure, Properties, and Phase Stability of Inorganic Crystals: A Pseudopotential Plane-Wave Study [J]. Int. J. Quant. Chem., 2000, 77: 895-910.

[22]

Birch F Equation of State and Thermodynamic Parameters of NaCl to 300 kbar in the High-Temperature Domain [J]. Journal of Geophysical Research, 1986, 91: 4 949-4 954.

[23]

Stampfl C, Mannstadt W, Asahi R, . Electronic Structure and Physical Properties of Early Transition Metal Mononitrides: Density-Functional Theory LDA, GGA, and Screened-Exchange LDA FLAPW Calculations [J]. Phys. Rev. B, 2001, 63: 155106

[24]

Grossman J C, Mizel A, Cöté M, . Transition Metals and Their Carbides and Nitrides: Trends in Electronic and Structural Properties [J]. Phys. Rev. B, 1999, 60: 6 343-6 347.

[25]

Guillermet A F, Häglund J, Grimvall G Cohesive Properties and Electronic Structure of 5d-Transition-Metal Carbides and Nitrides in the NaCl Structure [J]. Phys. Rev. B, 1993, 48: 11 673-11 684.

[26]

Wen M, Hu C Q, Wang C, . Effects of Substrate Bias on the Preferred Orientation, Phase Transition and Mechanical Properties for NbN Films Grown by Direct Current Reactive Magnetron Sputtering [J]. J. Appl. Phys., 2008, 104: 023 527

[27]

Chen X J, Struzhkin V V, Wu Z G, . Hard Superconducting Nitrides [J]. Proc. Natl. Acad. Sci. U.S.A., 2005, 102: 3 198-3 201.

[28]

Alfonso J E, Buitrago J, Torres J, . Influence of Fabrication Parameters on Crystallization, Microstructure, and Surface Composition of NbN Thin Films Deposited by RF Magnetron Sputtering [J]. J. Mater. Sci., 2010, 45: 5 528-5 533.

[29]

Kim J O, Achenbach J D, Mirkarimi P B, . Elastic Constants of Single-Crystal Transition-Metal Nitride Films Measured by Line-Focus Acoustic Microscopy [J]. J. Appl. Phys., 1992, 72: 1 805

[30]

Sun S R, Dong Y H First-Principles Study of the Phase Transition of HgS from Cinnabar to Rocksalt Structure under High Pressure [J]. Phys. Rev., B, 2005, 72: 174101

[31]

Wang J H, Li J, Yip S, . Mechanical Instabilities of Homogeneous Crystals [J]. Phys. Rev. B, 1995, 52: 12 627-12 635.

[32]

Wallace D C Thermodynamics of Crystals [M], 1972 New York Wiley

[33]

Karki B B, Ackland G J, Crain J Elastic Instabilities in Crystals from Ab Initio Stress-Strain Relations [J]. J. Phy.: Condens. Matter., 1997, 9: 8 579-8 589.

[34]

Barron T H K, Klein M L Second-Order Elastic Constants of a Solid Under Stress [J]. Proc. Phys. Soc., 1965, 85: 523-532.

[35]

Sin’ko G V, Smirnov N A Ab Initio Calculations of Elastic Constants and Thermodynamic Properties of BCC, FCC and HCP Al Crystals under Pressure [J]. J. Phys.: Condens. Matter, 2002, 14: 6 989-7 005.

[36]

Born M, Huang K Dynamical Theory of Crystal Lattices [M], 1954 Clarendon Oxford University Press

[37]

Yu B R, Yang J W, Guo H Z, . Phase Transition and Elastic Properties of BeO under Pressure from First-Principles Calculations [J]. Physica B, 2009, 404: 1 940-1 946.

[38]

Schreiber E, Anderson O L, Soga N Elastic Constants and Their Measurements [M], 1974 New York McGraw-Hill

[39]

Lu L Y, Cheng Y, Chen X R, . Thermodynamic Properties of MgO under High Pressure from First-Principles Calculations [J]. Phys. B, 2005, 370: 236-242.

[40]

Anderson O L A simplified Method for Calculating the Debye Temperature from Elastic Constants [J]. J. Phys. Chem. Solids, 1963, 24: 909-917.

[41]

Landau L D, Lifshitz E M Theory of Elasticity, Course of Theoretical Physics [M], 1981 New York Pergamon Press

[42]

Sarasamak K, Limpijumnong S, Lambrecht W R L Pressure-Dependent Elastic Constants and Sound Velocities of Wurtzite SiC, GaN, InN, ZnO, and CdSe, and Their Relation to the High-Pressure Phase Transition: A First-Principles Study[J]. Phys. Rev. B, 2010, 82: 035 201

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/