Mechanical properties of silica aerogels prepared from a mixture of TEOS and organo-alkoxysilanes of type R1SiX3

Hailong Yang , Xiangming Kong , Yanrong Zhang , Chunchao Wu , Enxiang Cao

Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (1) : 201 -207.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2014, Vol. 29 ›› Issue (1) : 201 -207. DOI: 10.1007/s11595-014-0893-8
Organic Materials

Mechanical properties of silica aerogels prepared from a mixture of TEOS and organo-alkoxysilanes of type R1SiX3

Author information +
History +
PDF

Abstract

Silica aerogels were prepared from a mixture of tetraethylorthosilicate and organoalkoxysilanes. The effects of organo-alkoxysilanes on the mechanical properties of the silica aerogels were studied. The flexibility of silica aerogels was significantly improved by incorporation of organo-alkoxysilanes. When MTES and TEOS were combined as precursors of silica areogels, with the increased amount of MTES, the apparent elastic modulus and apparent compressive strength monotonously rose. At the same organoalkoxysilanes to TEOS ratio, the size of alkyl groups of the organo-alkoxysilanes had little effect on the mechanical properties. In series of MTES and TEOS, the lowest elastic modulus of silica skeleton and the highest compressive strength of silica skeleton were observed at MTES to TEOS ratio of around 50:50. At a certain organo-alkoxysilanes to TEOS ratio, the elastic modulus of silica skeleton increased and the compressive strength of silica skeleton decreased with the size increase of the alkyl groups.

Keywords

silica aerogels / mechanical properties / organo-alkoxysilanes / silica skeleton / flexibility / sol-gel

Cite this article

Download citation ▾
Hailong Yang, Xiangming Kong, Yanrong Zhang, Chunchao Wu, Enxiang Cao. Mechanical properties of silica aerogels prepared from a mixture of TEOS and organo-alkoxysilanes of type R1SiX3. Journal of Wuhan University of Technology Materials Science Edition, 2014, 29(1): 201-207 DOI:10.1007/s11595-014-0893-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pierre A C, Pajonk G M Chemistry of Aerogels and Their Applications[J]. Chem. Rev., 2002, 102(11): 4 243-4 265.

[2]

Schmidt M, Schwertfeger F Applications for Silica Aerogel Products[J]. J. Non-Cryst. Solids, 1998, 225: 364-368.

[3]

Hüsing N, Schubert U Aerogels-airy Materials: Chemistry, Structure, and Properties[J]. Angew. Chem. Int. Ed., 1998, 37(1–2): 22-45.

[4]

Husing N, Schubert U Aerogels[M], 2005 Wiley Weinheim

[5]

Hrubesh L W Aerogel Applications[J]. J. Non-Cryst. Solids, 1998, 225: 335-342.

[6]

Fricke J, Tillotson T Aerogels: Production, Characterization, and Applications[J]. Thin Solid Films, 1997, 297(1–2): 212-223.

[7]

Rao A V, Kulkarni M M, Amalnerkar D P, . Surface Chemical Modification of Silica Aerogels Using Various Alkyl-alkoxy/Chloro Silanes[J]. Appl. Surf. Sci., 2003, 206(1–4): 262-270.

[8]

Rao A V, Pajonk G M Effect of Methyltrimethoxysilane as a Coprecursor on the Optical Properties of Silica Aerogels[J]. J. Non-Cryst. Solids, 2001, 285(1–3): 202-209.

[9]

Rao A V, Kalesh R R Organic Surface Modification of TEOS Based Silica Aerogels Synthesized by Co-precursor and Derivatization Methods[J]. J. Sol-Gel Sci. Technol., 2004, 30(3): 141-147.

[10]

Yokogawa H, Yokoyama M Hydrophobic Silica Aerogels[J]. J. Non-Cryst. Solids, 1995, 186: 23-29.

[11]

Lee K, Kim S, Yoo K Low-density, Hydrophobic Aerogels[J]. J. Non-Cryst. Solids, 1995, 186: 18-22.

[12]

Rao A V, Hegde N D, Hirashima H Absorption and Desorption of Organic Liquids in Elastic Superhydrophobic Silica Aerogels[J]. J. Colloid Interface Sci., 2007, 305(1): 124-132.

[13]

Štandeker S, Novak Z, Knez Adsorption of Toxic Organic Compounds from Water with Hydrophobic Silica Aerogels[J]. J. Colloid Interface Sci., 2007, 310(2): 362-368.

[14]

Štandeker S, Novak Z, Knez Removal of BTEX Vapours from Waste Gas Streams Using Silica Aerogels of Different Hydrophobicity[J]. J. Hazard. Mater., 2009, 165(1–3): 1 114-1 118.

[15]

Zaharescu M, Jitianu A, Braileanu A, . Ageing Effect on the SiO2-based Inorganic-organic Hybrid Materials[J]. J. Therm. Anal. Calorim., 2001, 64(2): 689-696.

[16]

Rao A V, Kalesh R R Comparative Studies of the Physical and Hydrophobic Properties of TEOS Based Silica Aerogels Using Different Co-precursors[J]. J. Sci. Technol. Adv. Mater., 2003, 4(6): 509-515.

[17]

Wagh P B, Ingale S V, Gupta S C Comparison of Hydrophobicity Studies of Silica Aerogels Using Contact Angle Measurements with Water Drop Method and Adsorbed Water Content Measurements Made by Karl Fischer’s Titration Method[J]. J. Sol-Gel Sci. Technol., 2010, 55(1): 73-78.

[18]

Rao A V, Haranath D Effect of Methyltrimethoxysilane as a Synthesis Component on the Hydrophobicity and Some Physical Properties of Silica Aerogels[J]. Microporous Mesoporous Mater., 1999, 30(2–3): 267-273.

[19]

Rao A V, Kulkarni M M Hydrophobic Properties of TMOS/TMES-based Silica Aerogels[J]. Mater. Res. Bull., 2002, 37(9): 1 667-1 677.

[20]

Nadargi D Y, Rao A V Methyltriethoxysilane: New Precursor for Synthesizing Silica Aerogels[J]. J. Alloys Compd., 2009, 467(1–2): 397-404.

[21]

Rao A V, Kulkarni M M, Amalnerkar D P, . Superhydrophobic Silica Aerogels Based on Methyltrimethoxysilane Precursor[J]. J. Non-Cryst. Solids, 2003, 330(1–3): 187-195.

[22]

Bhagat S D, Rao A V Surface Chemical Modification of TEOS Based Silica Aerogels Synthesized by Two Step (Acid-base) Sol-gel Process[J]. Appl. Surf. Sci., 2006, 252(12): 4 289-4 297.

[23]

Rao A V, Kulkarni M M, Pajonk G M, . Synthesis and Characterization of Hydrophobic Silica Aerogels Using Trimethylethoxysilane as a Co-Precursor[J]. J. Sol-Gel Sci. Technol., 2003, 27(2): 103-109.

[24]

Rao A V, Kalesh R R, Amalnerkar D P, . Synthesis and Characterization of Hydrophobic TMES/TEOS Based Silica Aerogels[J]. J. Porous Mater., 2003, 10(1): 23-29.

[25]

Rao A V, Pajonk G M, Haranath D Synthesis of Hydrophobic Aerogels for Transparent Window Insulation Applications[J]. Mater. Sci. Technol., 2001, 17(3): 343-348.

[26]

Jitianu A, Britchi A, Deleanu C Comparative Study of the Sol-gel Processes Starting with Different Substituted Si-alkoxides[J]. J. Non-Cryst. Solids, 2003, 319(3): 263-279.

[27]

Riegel B, Plittersdorf S, Kiefer W, . Raman Spectroscopic Analysis of the Sol-gel Processing of RSi(OMe)3Si(OMe) 4 Mixtures[J]. J. Mol. Struct., 1997, 410–411: 157-160.

[28]

Dong H, Zhang Z, Lee M, . Sol-gel Polycondensation of Methyltrimethoxysilane in Ethanol Studied by 29Si NMR Spectroscopy Using a Two-step Acid/Base Procedure[J]. J. Sol-Gel Sci. Technol., 2007, 41(1): 11-17.

[29]

Wagh P B, Ingale S V Comparison of Some Physico-chemical Properties of Hydrophilic and Hydrophobic Silica Aerogels[J]. Ceram. Int., 2002, 28(1): 43-50.

[30]

Al-Oweini R, El-Rassy H Surface Characterization by Nitrogen Adsorption of Silica Aerogels Synthesized from Various Si(OR)4 and R″Si(OR′)3 Precursors[J]. Appl. Surf. Sci., 2010, 257(1): 276-281.

[31]

El-Rassy H, Buisson P, Bouali B, . Surface Characterization of Silica Aerogels with Different Proportions of Hydrophobic Groups, Dried by the CO2 Supercritical Method[J]. Langmuir, 2003, 19(2): 358-363.

[32]

Al-Oweini R, El-Rassy H Synthesis and Characterization by FTIR Spectroscopy of Silica Aerogels Prepared Using Several Si(OR)4 and R″Si(OR′)3 Precursors[J]. J. Mol. Struct., 2009, 919(1–3): 140-145.

[33]

Schwertfeger F, Hüsing N, Schubert U Influence of the Nature of Organic Groups on the Properties of Organically Modified Silica Aerogels[J]. J. Sol-Gel Sci. Technol., 1994, 2(1–3): 103-108.

[34]

Rao R V, Bhagat S D, Hirashima H, . Synthesis of Flexible Silica Aerogels Using Methyltrimethoxysilane (MTMS) Precursor[J]. J. Colloid Interface Sci., 2006, 300(1): 279-285.

[35]

Kanamori K, Aizawa M, Nakanishi K, . New Transparent Methylsilsesquioxane Aerogels and Xerogels with Improved Mechanical Properties[J]. Adv. Mater., 2007, 19(12): 1 589-1 593.

[36]

Nadargi D Y, Latthe S S, Hirashima H, . Studies on Rheological Properties of Methyltriethoxysilane (MTES) Based Flexible Superhydrophobic Silica Aerogels[J]. Microporous Mesoporous Mater., 2009, 117(3): 617-626.

[37]

Bhagat S D, Oh C, Kim Y, . Methyltrimethoxysilane Based Monolithic Silica Aerogels via Ambient Pressure Drying[J]. Microporous Mesoporous Mater., 2007, 100(1–3): 350-355.

[38]

Rassy H E, Pierre A C NMR and IR Spectroscopy of Silica Aerogels with Different Hydrophobic Characteristics[J]. J. Non-Cryst. Solids, 2005, 351(19–20): 1 603-1 610.

[39]

Hegde N D, Rao A V Organic Modification of TEOS Based Silica Aerogels Using Hexadecyltrimethoxysilane as a Hydrophobic Reagent[J]. Appl. Surf. Sci., 2006, 253(3): 1 566-1 572.

[40]

Tillotson T M, Foster K G, Reynolds J G Structure and Characterization of Aerogel Materials and Oxidation Products from the Reaction of (CH3O)4Si and C16H33Si(OCH3)3[J]. J. Non-Cryst. Solids, 2003, 331(1–3): 168-176.

[41]

Rao A V, Kulkarni M M, Bhagat S D Transport of Liquids Using Superhydrophobic Aerogels[J]. J. Colloid Interface Sci., 2005, 285(1): 413-418.

[42]

Hegde N D, Hirashima H, Rao A V Two Step Sol-gel Processing of TEOS Based Hydrophobic Silica Aerogels Using Trimethylethoxysilane as a Co-Precursor[J]. J. Porous Mater., 2007, 14(2): 165-171.

[43]

Kanamori K, Aizawa M, Nakanishi K, . Elastic Organic-inorganic Hybrid Aerogels and Xerogels[J]. J. Sol-Gel Sci. Technol., 2008, 48(1–2): 172-181.

[44]

Zhang G, Dass A, Rawashdeh A M, . Isocyanate-crosslinked Silica Aerogel Monoliths: Preparation and Characterization[J]. J. Non-Cryst. Solids, 2004, 350: 152-164.

[45]

Griffith A A The Phenomena of Rupture and Flow in Solids[J]. Trans. R. Soc. London. Ser. A, 1921, 221(582–593): 163-198.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/