The combined effect of phosphorus grain boundary segregation and hardness on the ductile-to-brittle transition was examined for a P-doped 2.25Cr1Mo steel by using Auger electron spectroscopy in conjunction with hardness measurements, Charpy impact tests and scanning electron microscopy. With prolonging time at 540 °C after water quenching from 980 °C, the segregation of phosphorus increases and the hardness decreases. The DBTT (FATT) increases with increasing phosphorus segregation and decreases with decreasing hardness. The effect of phosphorus segregation is dominant until 100 h aging and after that the hardness effect becomes dominant. This effect makes the DBTT (FATT) decrease with further prolonging ageing time although the segregation of phosphorus still increases strongly.
By using the spark plasma sintering process, Ti2AlC/TiAl composite with the addition of Niobium (Nb) was prepared in-situ and the microstructure of Ti2AlC/TiAl (Nb) composite was investigated by means of transmission electron microscopy (TEM) and high-resolution electron microscopy (HREM). The results indicate that new-formed Ti2AlC particles disperse with a high degree of uniformity and well combine with the matrix. In the area of phase interface the d-spaces of Ti2AlC (100) and TiAl (110) were measured as 0.2648 nm and 0.2991 nm, respectively. The atom arrangement beside the interface was only partly corresponding, existing in semicoherent state. On the contrary, in the area of grain interface the d-spaces of TiAl (100) and TiAl (110) were measured as 0.2462 nm and 0.2631 nm, respectively and the atom arrangement beside the interface was almost corresponding, existing in coherent state
By using electrochemical and weight loss methods, the effect of MoO4 2− on the corrosion behaviors of low alloy steel was investigated in the 55%LiBr+0.07 mol/L LiOH solution at high temperature. The results show that MoO4 2−, being an anodic inhibitor, would form a passive film rapidly and impede both anodic and cathodic reactions. Moreover, Na2MoO4 effectively prevents corrosion in 55%LiBr+0.07 mol/L LiOH solution when its concentration is higher than 200 mg/L. Some elements of alloy, such as chromium and nickel, may cause the widening of passive potential region and the decrease of passive density, which indicates that the corrosion resistance increases. AES analysis shows that molybdenum participates in forming a protection film. The synergistic effect between chromium and molybdenum induces Cr-steel to be in passive state in lower Na2MoO4 concentration.
The deformation and densification laws of preform upsetting and closed-die forging were researched based on experimental results of cold forging of deoxidized Fe powder sintering porous material under different initial conditions such as friction factor, ratio between height and diameter and relative density. The fracture limit criterion for powder cold-forging upsetting and the limit strain curve were achieved. The effect of friction factor, ratio between height and diameter and relative density on fracture strain limitation was emphatically analyzed. The limit process parameter curves for the deformation of upsetting were also confirmed. Laws of deformation, densification and density distribution for closed-die forging of powder perform during cold-forging were further analyzed and discussed with the help of experimental phase analysis. As a result, this experiment established theoretical foundations for the design of preform and die as well as optimization of technological process parameters.
The kinetics of internal oxidation of Cu-Al alloy spheres, containing up to 2.214% mole fraction Al was investigated in the temperature range 1 023 K to 1 273 K, and the depth of internal oxidation was measured in the microscopy. A kinetic equation was derived to describe the internal oxidation of Cu-Al alloy spheres, which was checked experimentally by means of oxidation depth measurements. The results show that the derived equation is exact enough to describe the kinetics of internal oxidation of Cu-Al alloy spheres. Based on this equation and the oxidation depth measurements, the permeability of oxygen in solid copper has been obtained. Investigation also shows that in the process of internal oxidation, there is no evidence for preferential diffusion along grain boundaries.
The relation among electronic structure, chemical bond and property of Ti2AlC, Ti3AlC2 and doping Si into Ti2AlC was studied by density function and the discrete variation (DFT-DVM) method. After adding Si into Ti2AlC, the interaction between Si and Ti is weaker than that between Al and Ti, and the strengths of ionic and covalent bonds decrease both. The ionic and covalent bonds in Ti3AlC2, especially in Ti-Al, are stronger than those in Ti2AlC. Therefore, in synthesis of Ti2AlC, the addition of Si enhances the Ti3AlC2 content instead of Ti2AlC. The density of state (DOS) shows that there is mixed conductor characteristic in Ti2AlC and Ti3AlC2. The DOS of Ti3AlC2 is much like that of Ti2AlC. Ti2SixAl1−xC has more obvious tendency to form a semiconductor than Ti2AlC, which is seen from the obvious difference of partial DOS between Si and Al 3p.
The porous ceramisites for wastewater treatment were made from red mud, which is the industrial waste discharged from the production of Al2O3. The sintering process and the degreasing experiments with porous ceramisites have been finished. The results show that the sintering temperature control is dominant for the preparation of the porous ceramisites. The optimal sintering temperature is between 1 110–1 120°C, a narrow range. The surface of ceramists is distributed with a lot of coarse holes with diameters of about 1–10 μm. Moreover, the sintering temperatures have a great influence on the efficiency of degreasing, and the curve between the sintering temperature and the efficiency of degreasing is like a parabola.
The long-term performance of moderate heat Portland cement with double-expansive sources (DE cement) in the system of high MgO clinker and gypsum was studied by XRD, SEM/EDAX and test methods for strength and expansion of cement. Results indicate that the periclase particle, whose size was 5–7.5 μm in DE cement clinker containing 4.8 % MgO, existed individually. The periclase hydration in hardened DE cement paste started at about 60 days and completed up to 2 000 days, and ettringite in the paste was stable from 3 days to 2 000 days. Under the conditions of 4.5%–5.0 % MgO in clinker and 2.8%–3.4 %SO3 in cement, ettringite expansion and brucite expansion in DE cement paste had a continuity, entirety and stability. At the ages of 90, 365, 730 and 2 000 days the expansion of the paste reached 0.07%–0.11%, 0.16%–0.21%, 0.21%–0.27 % and 0.29%–0.38 %, respectively. The results suggest that by using this cement in mass concrete it may compensate its temperature shrinkage and autogenous shrinkage to some extent.
Etching and oxidation were adopted to improve the frequency dependence of permeability of nanocrystalline Fe85-xCo xNb7B8 ribbons. The effect of etching and oxidation on the permeability spectrum of nanocrystalline Fe85-xCo xNb7B8 ribbons was investigated. The relaxation frequency shifted to higher frequency end after etching and oxidation while the amplitude of µi was reduced at the same time. As a whole, µi f 0 rises and reflects the increasing of resistivity after etching and oxidation.
The microstructures of gypsum board and gypsum particleboard were observed by SEM. The effects of retarder and waterproof agent on the shape and the average dimension of the gypsum crystal were discussed. The mechanism was investigated as well. Four typical instances, i e, the gypsum crystal shape, the gypsum combined with particles on the particles surface, the gypsum combined with particles on the wood cross section and the gypsum combined with particles inside the wood cell cavity were selected and observed. Furthermore, the agglomeration and cementation mechanism between gypsum and particle were studied.
TiB2-Al2O3 composite powders were produced by self-propagating high-temperature synthesis(SHS) method with reductive process from B2O3-TiO2-Al system. X-ray diffraction(XRD) and scanning electron microscopy(SEM) analyses show the presence of TiB2 and Al2O3 only in the composite powders produced by SHS. The powders are uniform and free-agglomerate. Transmission electron microscopy (TEM) and high resolution electron microscopy (HREM) observation of microstructure of the composite powders indicate that the interfaces of the TiB2-Al2O3 bond well, without any interfacial reaction products. It is proposed that the good interfacial bonding of the composite powders can be resulted from the TiB2 particles crystallizing and growing on the Al2O3 particles surface with surface defects acting as nucleation centers.
The influence of low volume fraction of polypropylene(PP) fibers on the tensile properties of normal and high strength concretes was studied. The experimental results indicate that the addition of PP fibers in concrete leads to a reduction in tensile strength during the age of 28 d. Whereas, after 28 days, there is a notable effect in tensile strength due to PP fibers restraining the formation and growth of microcracks in concrete, which improves the continuity and integrality of concrete structure. Thus, a low volume fraction of PP fibers is beneficial to enhancing the long-term tensile strength of concrete materials and improving the durability of concrete structures.
A new composition of Portland cement clinker was studied, in which KH, SM and IM was 0.98,2.4 and 2.4 respectively as well as its meal added 1%CuO (in mass). Fired at 1 200 °C,1 350 °C,1 400 °C and 1 450 °C for 30 min, the resultant mineral phases component and mineral morphology were analyzed. The performances of the cement which was made of clinker burned at 1 450 °C and fly ash were determined. By means of QXRD, XRD and optical microscopy, it is shown that the clinker burnt at 1 450 °C has the larger size crystals and distinct crystal interface, in which the C3S content is 73.37% and the mineral phases is dominantly C3S, following by minor C2S, C3A and tetracalcium aluminoferrite. The results reveal that a new type of high C3S content clinker can completely be made by traditional temperature-time schedule. The performances of the cement produced from this clinker with addtion of 50% fly ash and 5% gupsum were in agreement with the 32.5 strength grade of Portland fly-ash cement. The results also show that the clinker has a significant effect of saving energy and utilizing waste slag.
The hydration products and microstructure of class G oil well cement and a newly developed plugging agent (YLD) slurries cured in the simulated temperature and pressure environment, which was of similar temperature and pressure with those at the bottom of oil well in a normal depth, were investigated using XRD, TG and SEM. Severe leakage is confirmed at the interface between hardened slurries and steel tube during the dynamically curing process, which induces the quick loss of cementing property of slurries. This should be the dominating cause of degradation of class G oil well cement slurry. A secondary hydration process can take place at the eroded interface of hardened YLD plugging agent slurry. Newly formed C-S-H gel has a self-healing effect to repair the damaged interface, which unceasingly maintains the cementing property of the YLD plugging agent slurry. Therefore, the effective using period of YLD plugging agent can be prolonged.
Composite thin films of PbTiO3 nano-crystals and high transparency polymer polyetherketone (PEK-c) for application of non-linear optical devices were prepared by spin coating. The size of PbTiO3 nano-crystals was estimated to be 30–40 nm using a transmission electron microscope. The refractive index and the mode propagation losses at 633 nm were measured using the prism coupling technique and improved photographic technique respectively. They were found to be 1.6545 and 2.00 dB cm−1 (fundamental mode), respectively. Moreover, it is observed that this loss is increased at higher mode indices.
To prepare the G.656 optical fiber for the future’s network, the methods of material design and waveguide design were applied to predict theoretic properties of the fiber. PCVD process was applied to manufacture the multi-layer GeO2, F co-doped SiO2 materials. The fiber properties were tested for the cut-off wavelength, MFD, dispersion, etc. The tested results agreed with the theoretic prediction.
The grain refining process of an AZ91D Mg alloy by Sr addition was studied and the heterogeneous nucleating particles of α-Mg were investigated by electron probe microanalysis (EPMA). With 0.6 wt% Sr addition, the mean grain size of AZ91D alloy was refined from 235.4 μm to 52.5 μm at the one-half radius of the ingot. The morphology of primary crystal changed from a sixford symmetrical shape to a petal-like shape. Mg-Sr-Al-Fe-Mn heterogeneous nucleating particles were observed at the grain centers and Sr solute atoms presented segregation along the grain boundaries. Grain refinement was facilitated by both the Mg-Sr-Al-Fe-Mn nucleating particles and the Sr solute atoms, and the former played a dominate role in the process.
Highly conductive IrO2 thin films were prepared on Si (100) substrates by means of pulsed laser deposition technique from an iridium metal target in an oxygen ambient atmosphere. Emphasis was put on the effect of oxygen pressure and substrate temperature on the structure, morphology and resistivity of IrO2 films. It was found that the above properties were strongly dependent on the oxygen pressure and substrate temperature. At 20 Pa oxygen ambient pressure, pure polycrystalline IrO2 thin films were obtained at substrate temperature in the 300–500 °C range with the preferential growth orientation of IrO2 films changed with the substrate temperature. IrO2 films exhibited a uniform and densely packed granular morphology with an average feature size increasing with the substrate temperature. The room-temperature resistivity variations of IrO2 films correlated well with the corresponding film morphology changes. IrO2 films with the minimum resistivity of (42±6) μΩ·cm was obtained at 500 °C.
This paper presents the results of a test program for flexure reinforcing characteristics of gless fiber-rein forced polymer(GFRP) sheets bonded to masonry beams. A total of eight specimens subjected to monotonic four-point bending were tested up to failure. These specimens were constructed with two different bond patterns. Six of these specimens were reinforced by using GFRP sheets prior to testing, and the remaining two were not reinforced. The test results indicate a significant increase in both load-bearing capacity and ductile performance of the reinforced walls over the unreinforced ones.
Coated-PMMA microspheres consisting of poly (methyl methacrylate)(PMMA) core and barium titanate (BaTiO3) shell were synthesized by the modified sol-gel processing and then adopted as an electrorheological (ER) materials. The structure and morphology of coated powders were characterized by SEM and FT-IR; the shear stress of the suspensions of coated-PMMA particles and pure PMMA particles in silicone oil with a 20 vol% were investigated. The results show that the BaTiO3 coated PMMA microspheres based suspension in silicone oil exhibited typical ER behavior and stronger ER effects
The effects of annealing temperatre on the electrical conducitivity and mechanical property of Cu-Te alloys were studied via an AG-10TA electronic universal machine, an SB2230 digital electric bridge, SEM, EDS and XPS. The results show the electrical conductivity increases while the tensile strength fluctuates when the annealing temperature becomes higher because the recrystallization occurs during the annealing process, leading to the density of dislocation decreasing, grain size growing up, but the second phase precipitating sufficiently and simultaneously.
The effects of glass frit on the sintering and electric properties of PMN-PT textured ceramics were investigated. The glass frits, including PbO, Bi2O3 and ZnO, were selected since liquid phase sintering lowered the PMN-PT sintering temperature. The piezoelectric properties of PMN-PT ceramics with glass frit addition are strongly dependent on the densification. The addition of glass frits into PMN-PT matrix reduced the sintering temperature to 1 100 °C instead of 1 150 °C for samples without glass. The piezoelectric coefficients (d 33) of PMN-PT textured ceramics achieved 568 pc/N with 1 wt% excess PbO.
Carbon soot containing fullerene was continuously produced in volume by pyrolyzing acetylene in thermal HF-Plasma. The characteristics of the carbon soot and C60 were analyzed by thtransmission electron microscopy, UV/visible, IR and Raman spectroscopy. The results show that the main ingredients of the carbon soot with size of about 25 nm are amorphous carbon, graphite and fullerene. The fullerene yield in carbon soot is about 2.5 g·h−. Compared with the graphite arc discharge method, the acetylene thermal plasma method is a preferential one for synthesis of fullerene.
The osteoblast with the β-TCP ceramic was co-cultured. Scanning electron microscopy shows the cells adhered onto β-TCP ceramic surface and grew better, proving the β-TCP ceramic has a biocompatible property. The Coomassie brilliant blue G-250 stain shows that the total protein in the experimental groups was highly increased compared with the control group (p<0.05). Flow-cytometric analysis shows that β-TCP ceramic could promote the osteoblast transform from the G0/G1 phase to S phase. Those all demonstrate the product of the degradation of the β-TCP ceramic may take part in the protein metabolism of osteoblast.
With the aim of providing effective periodontal disease therapeutic method, multilayer membranes which were loaded with drug for guided tissue regeneration were prepared using an immerse-precipitation phase inversion technique. Single layer, bi-layer and tri-layer membranes were fabricated with chitosan used as carrier and tinidazole as medicine model which was loaded on the membrane. The influence of layer on structure and properties of membrane were studied by SEM, UV spectrophotometer and mechanical test. Drug release properties of three types of layer membranes were also investigated. The results showed that release rate could be slown down in both bi-layer and tri-layer membranes (to 11 days and 14 days respectively) and tri-layer membrane lasted the longest. After a process of rapid release, the concentration of tinidazole which was released by the membrane was maintained at an efficient dosage level. Compared with single layer and bi-layer membranes, we found tri-layer membrane could play a role in controlling low-rate drug release especially at the early stage of release, and keep an efficient dosage at affected part for a long period of time. The loss of drug which loaded on membrane decreased from 84.6% for single layer to 13.04% for tri-layer. The mechanical strength of three types of membrane were detected and showed that it could meet the requiremens of clinical practice. The membranes especially with tri-layer could be more valuable in application.
Carboxyl methyl cellulose (CMC) was mixed into mortar to improve the water-retentio performance of mortar, the quality of floated coat of aerated concrete became better. The consistency and compression strength of mortar with CMC were studied. The water absorption was studied with the method of filter paper. The micro mechanism was researched with X-ray diffraction and scanning electron microscopy(SEM). The experimental results show the water-holding performance of mortar with CMC is largely improved and it is better when the mixed amount is about 1.5%; the compression strength had a descending trend with the increase of CMC; CMC reacted with calcium hydroxide(CH) into the deposition of calcium carboxyl methyl cellulose.
To assess the merits of PEGylated poly (lactic-co-glycolic acid) (PEG-PLGA) nanoparticles as drug carriers for tumor necrosis factor-α receptor blocking peptide (TNFR-BP), PEG-PLGA copolymer, which could be used to prepare the stealth nanoparticles, was synthesized with methoxypolyethyleneglycol, DL-lactide and glycolide. The structure of PEG-PLGA was confirmed with 1H-NMR and FT-IR spectroscopy, and the molecular weight (MW) was determined by gel permeation chromatography. Fluorescent FITC-TNFRBP was chosen as model protein and encapsulated within PEG-PLGA nanoparticles using the double emulsion method. Atomic force microscopy and photon correlation spectroscopy were employed to characterize the stealth nanoparticles fabricated for morphology, size with polydispersity index and zeta potential. Encapsulation efficiency (EE) and the release of FITC-TNFR-BP in nanoparticles in vitro were measured by the fluorescence measurement. The stealth nanoparticles were found to have the mean diameter less than 270 nm and zeta potential less than −20 mV. In all nanoparticle formulations, more than 45% of EE were obtained. FITC-TNFRBP release from the PEG-PLGA nanoparticles exhibited a biphasic pattern, initial burst release and consequently sustained release. The experimental results show that PEG-PLGA nanoparticles possess the potential to develop as drug carriers for controlled release applications of TNFR-BP.
The antibacterial property and biodegradability of soluble eggshell membrane protein (SEP) are reported. Unlike the natural eggshell membrane (ESM), SEP does not possess antibacterial property against E. coli. The biodegradation tests with trypsin show that both ESM and SEP are biodegradable.
A new compound, [Co(dien)2](dienH3)(H3O)7[P2Mo5O23]2·14H2O, has been hydrothermallly synthesized by using Na2MoO4, CoCl2, H3PO4 and dien, and structurally characterized by elemental analysis, X-ray powder diffraction analysis, SEM, IR and TG analysis. The results show that the compound is composed of a polyanion [P2Mo5O23]2 12− complex [Co(dien)2]2+ cation, protonated [dienH3]3+, and forteen crystallization water molecule.
Barium strontium titanate/magnesia (BSTO/MgO) ferroelectric material for phase shift was prepared by traditional solid phase synthesis. The phase distribution, microstructure and electric properties were investigated. The results show that no secondary phase appears in the composites and the dimension of grains distributes uniformly. With 50 wt% MgO content, the dielectric tunability reaches 17.5 % in the external DC field of 4 000 V·mm−1 and the microwave loss at about 2.5 GHz is 8×10−3. Hence, it can be applied in tunable microwave phase shifters.
The effects of different substrates on the structure and hydrogen evolution from a-Si: H thin films deposited by plasma enhanced chemical vapour deposition were studied, as well as the similar films exposed to an hydrogen plasma. Spectroscopic ellipsometry and hydrogen evolution measurements were used to analyse the effects of the substrate and hydrogen plasma on the films microstructure, thickness, hydrogen content, hydrogen bonding and hydrogen evolution. The hydrogen evolution spectra show a strong substrate dependence. In particular on crystalline silicon substrate, the formation of bubbles was observed. For different substrates, hydrogen plasma treatments lightly affected the hydrogen evolution spectra. These results indicate that the action of hydrogen in a-Si:H was modified by the nature of the substrate.
Porous glass was prepared by thermally treating sodium borosilicate glass for different time, the effect of thermal treatment on pore size distribution was discussed and the pore size of the prepared porous glass was measured by scanning electron microscopy (SEM) and differential thermal analysis (DTA). The results show that the optimum porous glass with an average diameter of 80 nm can be prepared by thermal treatment at 600 °C for 12 h and then acid treatment for 12 h in 2 mol·L−1 hydrochloric acid solution.
This paper presented the methods of reducing the compaction segregation of asphalt layer by improving the operating characteristics of roller and paver. The fit formula, which expresses the compaction rule of the paving layer after passing different rolling passes of the steel wheel roller, was also put forward. The measured results of test road show that when some technical methods are adopted, the compaction segregation can be controlled.
Uniform crystalline TiO2 thin films were coated on silica glass fibers by liquid phase deposition from aqueous solution of ammonium hexafluorotitanate at low temperature. TiO2 thin films and nano-powders were prepared by adding H3BO3 into (NH4)2TiF6 solution supersaturated with anatase nano-crystalline TiO2 at 40 °C. The effects of the deposition conditions on the surface morphology, section morphology, thickness of the deposited TiO2 thin films were investigated. The results indicate that the growth rate and particle size of the thin films were controlled by both the deposition conditions and the amount of anatase nano-crystalline TiO2.
CuInSe2 (CIS) thin films were prepared by electrodeposition from the de-ionized water solution consisting of CuCl2, InCl3, H2SeO3 and Na-citrate onto Mo/soda-lime glass (SLG) substrates. A thermal processing in Se atmosphere at 450 °C was carried out for the electrodepositied films to improve the stoichiometry. The composition and morphology of selenized CIS thin films were studied using energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM), respectively. X-ray diffraction (XRD) studies show that the annealing in Se atmosphere at 450 °C promotes the structural formation of CIS chalcopyrite structure.
Ceramic microspheres were prepared by using Chinese bauxite as raw materials through the centrifugal spray drying method. The control technology of microsphere size, degree of sphericity was researched. The ceramic microspheres were sintered by a double sintering process. The microstructure and composition of ceramic microsphere were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray energy spectroscopy. The results show that the degree of sphericity of the ceramic microsphere was good and the particle size was 10–100 μm. The XRD analysis reveals that the main crystalline phase of the ceramic microsphere was α-Al2O3 and mullite (3Al2O3·2SiO2). The product can be used as reinforced material for composite material, especially for antiskid and hard wearing aluminum alloy coating.
The technique of microwave irradiation induced free radical bulk-polyaddition reactions in porous wood flour was used to modify wood flour. The behaviors of the modified wood flour under microwave irradiation, such as thermal stability and moisture sorption properties, were studied. A kind of semi-interpenetrating polymer network wood four (Semi-IPN-WF) can be formed through polymerization of MMA in the porous wood flour by microwave irradiation, and the thermal decomposition temperature of the semi-IPN-WF is considerably increased. PVC/Semi-IPN-WF composites were prepared by melt mixing in double rolls, which exhibit improved rheological properties, lower water sorption properties and outstanding mechanical performances.
Conducting blends of polyacrylonitrile (PAN) copolymer and dodecylbenzene sulfonic acid doped polyaniline (PANI-DBSA) were prepared by solution blending of the two components. By means of various characterization methods including differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), transmission electron microscopy (TEM) and cone-plate rheometry, the effects of PANI-DBSA content on the thermal behavior, morphological and rheological properties of the blends were investigated. A single and composition-dependent T g was found for each of all blends and the thermal stability of PANI-DBSA/PAN was superior to that of both pure Co-PAN and PANIDBSA. Rheological results show that the apparent viscosity of blend solution decreased at low PANIDBSA content (2.5 wt%) while increased at high PANI-DBSA content (7.5wt%–10 wt%). Moreover, the shear-thinning appeared more distinctly with the incorporation of PANI-DBSA into the blend solutions especially at a high shear rate.
The crosslinked chitosan was grafted by 4′-formal benzo-15-crown-5 to obtaine crosslinked chitosan with 4′-formal benzo-15-crown-5(CCTS-N=CH-B-15-C-5). Then it was loaded with palldium chloride to gain the heterogeneous catalyst, which was easily isolated from the reaction system. The influences of the Pd content of the catalyst, solvent, and temperature on asymmetric hydrogenation of α-phenylethanone have been studied. The catalyst has been found to catalyze the hydrogenation of α-phenylethanone into the chiral alcohol, α-phenyl ethanol under the mild condition. The optical yield of (R)-1-phenylethanol could be obtained as 97.1% under the following conditions: temperature, 30 °C; solvent, ethanol; Pd content, 1.43 mmol/g; substrate concentration, 0.02 g /mL due to the cooperative effect of crown ether and chitosan polymer. The stability of this catalyst was also studied at the same time. This chiral natural crosslinked chitosan-palladium complex catalyst could be reused without appreciable change in optical catalytic activity, which will be useful for designing crosslinked-chitosan-based adsorption for metal ions for asymmetric hydrogenation.
Platinum, palladium and their alloy films on polyimide were formed by catalyst-enhanced chemical vapor deposition (CVD) in the carrier gas (N2, O2) at 220–300 °C under reduced pressure and normal pressure. The deposition of palladium complexes [ Pd((η3-allyl)(hfac) and Pd(hfac)2] gives pure palladium film, while the deposition of platinum needs the enhancement of palladium complex by mixing precursor platinum complex Pt(COD)Me2 and palladium complex in the same chamber. The co-deposition of Pd and Pt metals was used for the deposition of alloy films. During the CVD of palladium-platinum alloy, the Pd/Pt atomic ratios vary under different co-deposition conditions. These metal films were characterized by XPS and SEM, and show a good adhesive property.
Serial material model (Dilute model)and Limited Units (LU)method were employed to analyze the performance of binary piezo-composite system. The reckoned electric potential deployments illustrated difference while the particles were different. Their piezoelectricities were also calculated according to the model, and furthermore comparation suggested that small particles living in the tolerance improve the piezoelectricity of piezo-composite. Experiments coinciding with analyses were processed simultaneously. Ceramics were milled for different time in order to control the concentration of particle size. The results showed that the filled particles enhanced the piezoelectricity of binary piezo-composite system efficiently whereas too many chips deteriorated the performance of piezo-composites.
Hollow spheres of hexagonal ferrite BaCo2Fe16O27 were fabricated through a spray pyrolysis technique using co-precipitation ferrite powder precursor as materials, followed by calcinations in an air atmosphere. The phase composition, micro-morphology, and static magnetic property of the particles were measured by XRD, SEM, and VSM. The results indicate that the method for preparation of ferrite hollow microspheres (FHM) results in a broad particles size distribution. The density of FHM decreased from 5.31 g/cm3 to 2.31 g/cm3. When the heating rate was 5 °C/min, and temperature was 1 200 °C for 4 hours, pure W-type ferrites were formed. With the heat treatment temperature and time increasing, the crystal structure becomes perfect, the saturation magnetization is increased and the coercive force is decreased.
By testing the melt index (MI), tensile strength and breaking extension ratio, the thermal ageing rate of polyoxymethylene (POM) was analyzed and compared. The surface morphology and type of function group of POM surface were observed and analyzed by SEM and XPS. The results show that the MI value increases gradually with the ageing time at 120 °C, indicating that the thermal oxidation decomposition occurrs slowly. The effect of 20-day thermal ageing on the tensile strength and breaking extension ratio of POM is not obvious, showing that the ageing of POM is quite a long process. After 105-day, thermal ageing cracking and powdering occurr on the POM surface. XPS determination shows the C1s spectra of samples before and after ageing include two peaks of C-C and C-O, while after ageing the content of C-C decreases and the content of C-O increases, indicating that the thermal ageing of POM is mainly the breaking and decomposing of C-C bond. The O1s/C1s ratio of original samples is 56.98% and after 105-day thermal ageing the ratio is 72.92%.
Hollow HAP microspheres in sub-millimeter size were prepared and investigated as a drug delivery vehicle. The LCB (lithium-calcium borate) glass microspheres, which were made through flame spray process, were chosen as precursor for hollow HAP microspheres. The LCB glass microspheres reacted with phosphate buffer (K2HPO4) solution for 5 days at 37 °C. During the reaction the Ca-P-OH compound precipitated on the surface of LCB glass microspheres and formed porous shells. Then the microspheres turned to be hollow ones with the same diameter as the glass microspheres after LCB glass run out in the chemical reaction. After heat-treated at 600 ° for 4 h, the Ca-P-OH compound became HAP, thus the hollow HAP microspheres were produced. The mechanism of forming hollow HAP microspheres through the chemical reaction between phosphate buffer and LCB glass was confirmed by the XRD analysis. The microstructure characteristics of the hollow, porous microspheres were observed by SEM.