Effects of Mo composites on the corrosion behaviors of low alloy steel

Chenghao Liang , Jianwei Guo , Xianqi Hu

Journal of Wuhan University of Technology Materials Science Edition ›› 2007, Vol. 22 ›› Issue (1) : 12 -16.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2007, Vol. 22 ›› Issue (1) : 12 -16. DOI: 10.1007/s11595-005-1012-7
Article

Effects of Mo composites on the corrosion behaviors of low alloy steel

Author information +
History +
PDF

Abstract

By using electrochemical and weight loss methods, the effect of MoO4 2− on the corrosion behaviors of low alloy steel was investigated in the 55%LiBr+0.07 mol/L LiOH solution at high temperature. The results show that MoO4 2−, being an anodic inhibitor, would form a passive film rapidly and impede both anodic and cathodic reactions. Moreover, Na2MoO4 effectively prevents corrosion in 55%LiBr+0.07 mol/L LiOH solution when its concentration is higher than 200 mg/L. Some elements of alloy, such as chromium and nickel, may cause the widening of passive potential region and the decrease of passive density, which indicates that the corrosion resistance increases. AES analysis shows that molybdenum participates in forming a protection film. The synergistic effect between chromium and molybdenum induces Cr-steel to be in passive state in lower Na2MoO4 concentration.

Keywords

lithium bromide / low alloy steel / inhibitor / corrosion

Cite this article

Download citation ▾
Chenghao Liang, Jianwei Guo, Xianqi Hu. Effects of Mo composites on the corrosion behaviors of low alloy steel. Journal of Wuhan University of Technology Materials Science Edition, 2007, 22(1): 12-16 DOI:10.1007/s11595-005-1012-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Richard S Levine. Avoiding Problems from Lithium Bromide in Absorption Chillers[J]. Plant Engineering, 1978 (12): 157–159

[2]

Tanno K., Itoh M., Yashiro H., . The Corrosion Inhibition of Carbon Steel in Lithium Bromide Solution by Hydroxide and Molybdate at Moderate Temperatures[J]. Corrosion Science, 1993, 34(9): 1 453-1 461.

[3]

Guinon J. L., Garcia-Anton J., Perez-Herranz V., . Corrosion of Carbon Steel, Stainless Steel, and Titanium in Aqueous Lithium Bromide Solution[J]. Corrosion, 1994, 50(3): 240-246.

[4]

Itzhk D., Elias O., Greenberg Y. Behavior of Type 316 Austenitic Stainless Steel in 55% Lithium Bromide Heavy Brine Enviroments[J]. Corrosion, 1996, 52(1): 72-78.

[5]

Stranick M. A. Corrosion Inhibition of Metals by Molybdate[J]. Corrosion, 1984, 40(6): 296-302.

[6]

Vračar L., DražiĆ D. M. Influence of Chloride Ion Adsorption on Hydrogen Evolution Reaction on Iron[J]. Journal of Electroanalytical Chemistry, 1992, 339: 269-279.

[7]

Scully J. R. Polarization Resistance Method for Determination of Instantaneous Corrosion Rates[J]. Corrosion, 2000, 56(2): 199-218.

[8]

Abderko A., Young R. D. Model for Corrosion of Carbon Steel in Lithium Bromide Absorption Refrigeration Systems[J]. Corrosion, 2000, 56(5): 543-555.

[9]

Mack L. P., Ken N. Effect of Bromide Ions on the Electrochemical Behavior of Iron[J]. Corrosion, 1984, 40(5): 215-219.

[10]

Katsumi M., Tomoko K., Heihavhiro M., . Corrosion Inhibition Mechanism of Carbon Steel by Li2MoO4 and LiNO3/Li2MoO4 Mixed Inhibitors in Concentrated LiBr Solutions at Elevated Temperature[J]. Zairyo-to-Kankyo, 1996, 45(9): 526-533.

[11]

Tanno K., Sai A. The Corrosion Behavior of Various Steels in 58%LiBr-7%LiNO3-1%KCl Absorption Solution[J]. Proceeding of JSCE Corrosion, 1995. Tokyo: Japan Society of Corrosion Engineering. 119-122.

[12]

Ogawa H., Omata H., Itoh I., . Auger Electron Spectroscopic and Electrochemical Analysis of the Effect of Alloying Elements on the Passivation Behavior of Stainless Steels[J]. Corrosion, 1978, 34(2): 52-60.

[13]

Wanklyn J. N. The Role of Molybdenum in the Crevice Corrosion of Stainless Steels[J]. Corrosion Science, 1981, 21(3): 211-225.

[14]

Newman R. C. The Dissolution and Passivation Kinetics of Stainless Alloys Containing Molybdenum[J]. Corrosion Science, 1985, 25(5): 341-350.

[15]

Newman R. C. The Dissolution and Passivation Kinetics of Stainless Alloys Containing Molybdenum[J]. Corrosion Science, 1985, 25(5): 331-339.

[16]

Sugimoto K., Sawada Y. The Role of Molybdenum Additions to Austenitic Stainless Steels in the Inhibition of Pitting in Acid Chloride Solutions[J]. Corrosion Science, 1977, 17(2): 425-445.

[17]

Huang S.-ju. Corrosion and Protection of Metals[M], 1988. Xi’an: Xi’an Jiaotong University Press.

[18]

Doche M. L., Rameau J. J., Durand R., . Electrochemical Behaviour of Aluminium in Concentrated NaOH Solutions[J]. Corrosion Science, 1999, 41(4): 805-826.

[19]

Castello P., Stott F. H., Gesmundo F. Yttrium-promoted Selective Oxidation of Aluminium in the Oxidation at 1 100 °C of an Eutectic Ni-Al-Cr3C2 Alloy[J]. Corrosion Science, 1999, 41(5): 901-918.

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/