May 2024, Volume 66 Issue 5
    

  • Select all
  • Editorial
    Hongtao Liu, Jigang Li
    2024, 66(5): 847-848. https://doi.org/10.1111/jipb.13672
    PDF
  • Invited Expert Review
    Fereshteh Jafari, Baobao Wang, Haiyang Wang, Junjie Zou
    2024, 66(5): 849-864. https://doi.org/10.1111/jipb.13603
    PDF

    Maize is a major staple crop widely used as food, animal feed, and raw materials in industrial production. High-density planting is a major factor contributing to the continuous increase of maize yield. However, high planting density usually triggers a shade avoidance response and causes increased plant height and ear height, resulting in lodging and yield loss. Reduced plant height and ear height, more erect leaf angle, reduced tassel branch number, earlier flowering, and strong root system architecture are five key morphological traits required for maize adaption to high-density planting. In this review, we summarize recent advances in deciphering the genetic and molecular mechanisms of maize involved in response to high-density planting. We also discuss some strategies for breeding advanced maize cultivars with superior performance under high-density planting conditions.

  • Review Article
    Young-Joon Park, Bo Eun Nam, Chung-Mo Park
    2024, 66(5): 865-882. https://doi.org/10.1111/jipb.13602
    PDF

    Coordinated morphogenic adaptation of growing plants is critical for their survival and propagation under fluctuating environments. Plant morphogenic responses to light and warm temperatures, termed photomorphogenesis and thermomorphogenesis, respectively, have been extensively studied in recent decades. During photomorphogenesis, plants actively reshape their growth and developmental patterns to cope with changes in light regimes. Accordingly, photomorphogenesis is closely associated with diverse growth hormonal cues. Notably, accumulating evidence indicates that light-directed morphogenesis is profoundly affected by two recently identified phytochemicals, karrikins (KARs) and strigolactones (SLs). KARs and SLs are structurally related butenolides acting as signaling molecules during a variety of developmental steps, including seed germination. Their receptors and signaling mediators have been identified, and associated working mechanisms have been explored using gene-deficient mutants in various plant species. Of particular interest is that the KAR and SL signaling pathways play important roles in environmental responses, among which their linkages with photomorphogenesis are most comprehensively studied during seedling establishment. In this review, we focus on how the phytochemical and light signals converge on the optimization of morphogenic fitness. We also discuss molecular mechanisms underlying the signaling crosstalks with an aim of developing potential ways to improve crop productivity under climate changes.

  • Mini Review
    Gao-Ping Qu, Bochen Jiang, Chentao Lin
    2024, 66(5): 883-896. https://doi.org/10.1111/jipb.13578
    PDF

    Photoreceptor cryptochromes (CRYs) mediate blue-light regulation of plant growth and development. It has been reported that Arabidopsis CRY1and CRY2 function by physically interacting with at least 84 proteins, including transcription factors or co-factors, chromatin regulators, splicing factors, messenger RNA methyltransferases, DNA repair proteins, E3 ubiquitin ligases, protein kinases and so on. Of these 84 proteins, 47 have been reported to exhibit altered binding affinity to CRYs in response to blue light, and 41 have been shown to exhibit condensation to CRY photobodies. The blue light-regulated composition or condensation of CRY complexes results in changes of gene expression and developmental programs. In this mini-review, we analyzed recent studies of the photoregulatory mechanisms of Arabidopsis CRY complexes and proposed the dual mechanisms of action, including the “Lock-and-Key” and the “Liquid-Liquid Phase Separation (LLPS)” mechanisms. The dual CRY action mechanisms explain, at least partially, the structural diversity of CRY-interacting proteins and the functional diversity of the CRY photoreceptors.

  • Research Article
    Cheng Li, Jiancan Du, Huini Xu, Zhenhua Feng, Caspar C. C. Chater, Yuanwen Duan, Yongping Yang, Xudong Sun
    2024, 66(5): 897-908. https://doi.org/10.1111/jipb.13648
    PDF

    The phytohormone jasmonate (JA) coordinates stress and growth responses to increase plant survival in unfavorable environments. Although JA can enhance plant UV-B stress tolerance, the mechanisms underlying the interaction of UV-B and JA in this response remain unknown. In this study, we demonstrate that the UV RESISTANCE LOCUS 8 - TEOSINTE BRANCHED1, Cycloidea and PCF 4 - LIPOXYGENASE2 (UVR8-TCP4-LOX2) module regulates UV-B tolerance dependent on JA signaling pathway in Arabidopsis thaliana. We show that the nucleus-localized UVR8 physically interacts with TCP4 to increase the DNA-binding activity of TCP4 and upregulate the JA biosynthesis gene LOX2. Furthermore, UVR8 activates the expression of LOX2 in a TCP4-dependent manner. Our genetic analysis also provides evidence that TCP4 acts downstream of UVR8 and upstream of LOX2 to mediate plant responses to UV-B stress. Our results illustrate that the UV-B-dependent interaction of UVR8 and TCP4 serves as an important UVR8-TCP4-LOX2 module, which integrates UV-B radiation and JA signaling and represents a new UVR8 signaling mechanism in plants.

  • Research Article
    Xiaofeng Luo, Yujia Dai, Baoshan Xian, Jiahui Xu, Ranran Zhang, Muhammad Saad Rehmani, Chuan Zheng, Xiaoting Zhao, Kaitao Mao, Xiaotong Ren, Shaowei Wei, Lei Wang, Juan He, Weiming Tan, Junbo Du, Weiguo Liu, Shu Yuan, Kai Shu
    2024, 66(5): 909-927. https://doi.org/10.1111/jipb.13615
    PDF

    Transcriptional regulation plays a key role in the control of seed dormancy, and many transcription factors (TFs) have been documented. However, the mechanisms underlying the interactions between different TFs within a transcriptional complex regulating seed dormancy remain largely unknown. Here, we showed that TF PHYTOCHROME-INTERACTING FACTOR4 (PIF4) physically interacted with the abscisic acid (ABA) signaling responsive TF ABSCISIC ACID INSENSITIVE4 (ABI4) to act as a transcriptional complex to promote ABA biosynthesis and signaling, finally deepening primary seed dormancy. Both pif4 and abi4 single mutants exhibited a decreased primary seed dormancy phenotype, with a synergistic effect in the pif4/abi4 double mutant. PIF4 binds to ABI4 to form a heterodimer, and ABI4 stabilizes PIF4 at the protein level, whereas PIF4 does not affect the protein stabilization of ABI4. Subsequently, both TFs independently and synergistically promoted the expression of ABI4 and NCED6, a key gene for ABA anabolism. The genetic evidence is also consistent with the phenotypic, physiological and biochemical analysis results. Altogether, this study revealed a transcriptional regulatory cascade in which the PIF4–ABI4 transcriptional activator complex synergistically enhanced seed dormancy by facilitating ABA biosynthesis and signaling.

  • Research Article
    Yafei Li, Yiyi Guo, Yue Cao, Pengguo Xia, Dongqing Xu, Ning Sun, Lixi Jiang, Jie Dong
    2024, 66(5): 928-942. https://doi.org/10.1111/jipb.13582
    PDF

    Precise responses to changes in light quality are crucial for plant growth and development. For example, hypocotyls of shade-avoiding plants typically elongate under shade conditions. Although this typical shade-avoidance response (TSR) has been studied in Arabidopsis (Arabidopsis thaliana), the molecular mechanisms underlying shade tolerance are poorly understood. Here we report that B. napus (Brassica napus) seedlings exhibit dual shade responses. In addition to the TSR, B. napus seedlings also display an atypical shade response (ASR), with shorter hypocotyls upon perception of early-shade cues. Genome-wide selective sweep analysis indicated that ASR is associated with light and auxin signaling. Moreover, genetic studies demonstrated that phytochrome A (BnphyA) promotes ASR, whereas BnphyB inhibits it. During ASR, YUCCA8 expression is activated by early-shade cues, leading to increased auxin biosynthesis. This inhibits hypocotyl elongation, as young B. napus seedlings are highly sensitive to auxin. Notably, two non-canonical AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) repressor genes, BnIAA32 and BnIAA34, are expressed during this early stage. BnIAA32 and BnIAA34 inhibit hypocotyl elongation under shade conditions, and mutations in BnIAA32 and BnIAA34 suppress ASR. Collectively, our study demonstrates that the temporal expression of BnIAA32 and BnIAA34 determines the behavior of B. napus seedlings following shade-induced auxin biosynthesis.

  • Research Article
    Suhui Chen, Shan Gao, Dongyang Wang, Jie Liu, Yingying Ren, Zhihan Wang, Xin Wei, Qin Wang, Xuehui Huang
    2024, 66(5): 943-955. https://doi.org/10.1111/jipb.13639
    PDF

    Maize (Zea mays subspecies mays) is an important commercial crop across the world, and its flowering time is closely related to grain yield, plant cycle and latitude adaptation. FKF1 is an essential clock-regulated blue-light receptor with distinct functions on flowering time in plants, and its function in maize remains unclear. In this study, we identified two FKF1 homologs in the maize genome, named ZmFKF1a and ZmFKF1b, and indicated that ZmFKF1a and ZmFKF1b independently regulate reproductive transition through interacting with ZmCONZ1 and ZmGI1 to increase the transcription levels of ZmCONZ1 and ZCN8. We demonstrated that ZmFKF1b underwent artificial selection during modern breeding in China probably due to its role in geographical adaptation. Furthermore, our data suggested that ZmFKF1bHap_C7 may be an elite allele, which increases the abundance of ZmCONZ1 mRNA more efficiently and adapt to a wider range of temperature zone than that of ZmFKF1bHap_Z58 to promote maize floral transition. It extends our understanding of the genetic diversity of maize flowering. This allele is expected to be introduced into tropical maize germplasm to enrich breeding resources and may improve the adaptability of maize at different climate zones, especially at temperate region.

  • Research Article
    Yajuan Fu, Wei Zhu, Yeling Zhou, Yujing Su, Zhiyong Li, Dayan Zhang, Dong Zhang, Jinyu Shen, Jiansheng Liang
    2024, 66(5): 956-972. https://doi.org/10.1111/jipb.13651
    PDF

    Plants deploy versatile scaffold proteins to intricately modulate complex cell signaling. Among these, RACK1A (Receptors for Activated C Kinase 1A) stands out as a multifaceted scaffold protein functioning as a central integrative hub for diverse signaling pathways. However, the precise mechanisms by which RACK1A orchestrates signal transduction to optimize seedling development remain largely unclear. Here, we demonstrate that RACK1A facilitates hypocotyl elongation by functioning as a flexible platform that connects multiple key components of light signaling pathways. RACK1A interacts with PHYTOCHROME INTERACTING FACTOR (PIF)3, enhances PIF3 binding to the promoter of BBX11 and down-regulates its transcription. Furthermore, RACK1A associates with ELONGATED HYPOCOTYL 5 (HY5) to repress HY5 biochemical activity toward target genes, ultimately contributing to hypocotyl elongation. In darkness, RACK1A is targeted by CONSTITUTIVELY PHOTOMORPHOGENIC (COP)1 upon phosphorylation and subjected to COP1-mediated degradation via the 26 S proteasome system. Our findings provide new insights into how plants utilize scaffold proteins to regulate hypocotyl elongation, ensuring proper skoto- and photo-morphogenic development.

  • Research Article
    Qingbiao Shi, Ying Xia, Na Xue, Qibin Wang, Qing Tao, Mingjing Li, Di Xu, Xiaofei Wang, Fanying Kong, Haisen Zhang, Gang Li
    2024, 66(5): 973-985. https://doi.org/10.1111/jipb.13630
    PDF

    Starch is a major storage carbohydrate in plants and is critical in crop yield and quality. Starch synthesis is intricately regulated by internal metabolic processes and external environmental cues; however, the precise molecular mechanisms governing this process remain largely unknown. In this study, we revealed that high red to far-red (high R:FR) light significantly induces the synthesis of leaf starch and the expression of synthesis-related genes, whereas low R:FR light suppress these processes. Arabidopsis phytochrome B (phyB), the primary R and FR photoreceptor, was identified as a critical positive regulator in this process. Downstream of phyB, basic leucine zipper transcription factor ELONGATED HYPOCOTYL5 (HY5) was found to enhance starch synthesis, whereas the basic helix-loop-helix transcription factors PHYTOCHROME INTERACTING FACTORs (PIF3, PIF4, and PIF5) inhibit starch synthesis in Arabidopsis leaves. Notably, HY5 and PIFs directly compete for binding to a shared G-box cis-element in the promoter region of genes encoding starch synthases GBSS, SS3, and SS4, which leads to antagonistic regulation of their expression and, consequently, starch synthesis. Our findings highlight the vital role of phyB in enhancing starch synthesis by stabilizing HY5 and facilitating PIFs degradation under high R:FR light conditions. Conversely, under low R:FR light, PIFs predominantly inhibit starch synthesis. This study provides insight into the physiological and molecular functions of phyB and its downstream transcription factors HY5 and PIFs in starch synthesis regulation, shedding light on the regulatory mechanism by which plants synchronize dynamic light signals with metabolic cues to module starch synthesis.

  • Research Article
    Huayang Tian, Hongkui Zhang, Huaqiu Huang, Yu'e Zhang, Yongbiao Xue
    2024, 66(5): 986-1006. https://doi.org/10.1111/jipb.13584
    PDF

    Self-incompatibility (SI) is an intraspecific reproductive barrier widely present in angiosperms. The SI system with the broadest occurrence in angiosperms is based on an S-RNase linked to a cluster of multiple S-locus F-box (SLF) genes found in the Solanaceae, Plantaginaceae, Rosaceae, and Rutaceae. Recent studies reveal that non-self S-RNase is degraded by the Skip Cullin F-box (SCF)SLF-mediated ubiquitin–proteasome system in a collaborative manner in Petunia, but how self-RNase functions largely remains mysterious. Here, we show that S-RNases form S-RNase condensates (SRCs) in the self-pollen tube cytoplasm through phase separation and the disruption of SRC formation breaks SI in self-incompatible Petunia hybrida. We further find that the pistil SI factors of a small asparagine-rich protein HT-B and thioredoxin h together with a reduced state of the pollen tube all promote the expansion of SRCs, which then sequester several actin-binding proteins, including the actin polymerization factor PhABRACL, the actin polymerization activity of which is reduced by S-RNase in vitro. Meanwhile, we find that S-RNase variants lacking condensation ability fail to recruit PhABRACL and are unable to induce actin foci formation required for pollen tube growth inhibition. Taken together, our results demonstrate that phase separation of S-RNase promotes SI response in P. hybrida, revealing a new mode of S-RNase action.

  • Research Article
    Meijing Yang, Shuai Chen, Shey-Li Lim, Lang Yang, Jia Yi Zhong, Koon Chuen Chan, Zhizhu Zhao, Kam-Bo Wong, Junqi Wang, Boon Leong Lim
    2024, 66(5): 1007-1023. https://doi.org/10.1111/jipb.13645
    PDF

    In plants, thousands of nucleus-encoded proteins translated in the cytosol are sorted to chloroplasts and mitochondria by binding to specific receptors of the TOC (translocon on the outer chloroplast membrane) and the TOM (translocon on the outer mitochondrial membrane) complexes for import into those organelles. The degradation pathways for these receptors are unclear. Here, we discovered a converged ubiquitin-proteasome pathway for the degradation of Arabidopsis thaliana TOC and TOM tail-anchored receptors. The receptors are ubiquitinated by E3 ligase(s) and pulled from the outer membranes by the AAA+ adenosine triphosphatase CDC48, after which a previously uncharacterized cytosolic protein, transmembrane domain (TMD)-binding protein for tail-anchored outer membrane proteins (TTOP), binds to the exposed TMDs at the C termini of the receptors and CDC48, and delivers these complexes to the 26S proteasome.

  • Research Article
    Jiacai Chen, Liu Liu, Guangxin Chen, Shaoyun Wang, Ye Liu, Zeqin Zhang, Hongfei Li, Liming Wang, Zhaoyang Zhou, Jianyu Zhao, Xiaolan Zhang
    2024, 66(5): 1024-1037. https://doi.org/10.1111/jipb.13655
    PDF

    Leaves are the main photosynthesis organ that directly determines crop yield and biomass. Dissecting the regulatory mechanism of leaf development is crucial for food security and ecosystem turn-over. Here, we identified the novel function of R2R3-MYB transcription factors CsRAXs in regulating cucumber leaf size and fruiting ability. Csrax5 single mutant exhibited enlarged leaf size and stem diameter, and Csrax1/2/5 triple mutant displayed further enlargement phenotype. Overexpression of CsRAX1 or CsRAX5 gave rise to smaller leaf and thinner stem. The fruiting ability of Csrax1/2/5 plants was significantly enhanced, while that of CsRAX5 overexpression lines was greatly weakened. Similarly, cell number and free auxin level were elevated in mutant plants while decreased in overexpression lines. Biochemical data indicated that CsRAX1/5 directly promoted the expression of auxin glucosyltransferase gene CsUGT74E2. Therefore, our data suggested that CsRAXs function as repressors for leaf size development by promoting auxin glycosylation to decrease free auxin level and cell division in cucumber. Our findings provide new gene targets for cucumber breeding with increased leaf size and crop yield.