![](/develop/static/imgs/pdf.png)
Environmentally adaptive reshaping of plant photomorphogenesis by karrikin and strigolactone signaling
Young-Joon Park, Bo Eun Nam, Chung-Mo Park
Environmentally adaptive reshaping of plant photomorphogenesis by karrikin and strigolactone signaling
Coordinated morphogenic adaptation of growing plants is critical for their survival and propagation under fluctuating environments. Plant morphogenic responses to light and warm temperatures, termed photomorphogenesis and thermomorphogenesis, respectively, have been extensively studied in recent decades. During photomorphogenesis, plants actively reshape their growth and developmental patterns to cope with changes in light regimes. Accordingly, photomorphogenesis is closely associated with diverse growth hormonal cues. Notably, accumulating evidence indicates that light-directed morphogenesis is profoundly affected by two recently identified phytochemicals, karrikins (KARs) and strigolactones (SLs). KARs and SLs are structurally related butenolides acting as signaling molecules during a variety of developmental steps, including seed germination. Their receptors and signaling mediators have been identified, and associated working mechanisms have been explored using gene-deficient mutants in various plant species. Of particular interest is that the KAR and SL signaling pathways play important roles in environmental responses, among which their linkages with photomorphogenesis are most comprehensively studied during seedling establishment. In this review, we focus on how the phytochemical and light signals converge on the optimization of morphogenic fitness. We also discuss molecular mechanisms underlying the signaling crosstalks with an aim of developing potential ways to improve crop productivity under climate changes.
karrikins / morphogenic adaptation / photomorphogenesis / seedling establishment / strigolactones
[1] |
Abbas,M., Berckhan, S., Rooney,D.J., Gibbs,D.J., Conde,J.V., Correia,C.S., Bassel,G.W., la Rosa, N.M.D., León,J., Alabadí,D., et al. (2015). Oxygen sensing coordinates photomorphogenesis to facilitate seedling survival. Curr. Biol. 25: 1483–1488.
|
[2] |
Abdelrahman,M., Mostofa, M.G., Tran,C.D., El-Sayed,M., Li,W., Sulieman,S., Tanaka, M., Seki,M., and Tran,L.S.P. (2023). The karrikin receptor KARRIKIN INSENSITIVE2 positively regulates heat stress tolerance in Arabidopsis thaliana. Plant Cell Physiol. 63: 1914–1926.
|
[3] |
Araguirang,G.E., and Richter, A.S. (2022). Activation of anthocyanin biosynthesis in high light—What is the initial signal? New Phytol. 236: 2037–2043.
|
[4] |
Asano,T., Okada,T., Shinkai,S., Shigematsu, K., Kusano,Y., and Manabe,O. (1981). Temperature and pressure dependences of thermal cis-to-trans isomerization of azobenzenes which evidence an inversion mechanism. J. Am. Chem. Soc. 103: 5161–5165.
|
[5] |
Auldridge,M.E., Block,A., Vogel,J.T., Dabney-Smith, C., Mila,I., Bouzayen,M., Magallanes-Lundback, M., DellaPenna,D., McCarty,D.R., and Klee, H.J. (2006). Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. Plant J. 45: 982–993.
|
[6] |
Banerjee,A., Tripathi, D.K., and Roychoudhury,A. (2019). The karrikin ‘calisthenics’: Can compounds derived from smoke help in stress tolerance? Physiol. Plant. 165: 290–302.
|
[7] |
Barrera-Rojas,C.H., Vicente, M.H., Brito,D.A.P., Silva,E.M., Lopez,A.M., Ferigolo,L.F., do Carmo,R.M., Silva,C.M.S., Silva,G.F.F., Correa,J.P.O., et al. (2023). Tomato miR156-targeted SlSBP15 represses shoot branching by modulating hormone dynamics and interacting with GOBLET and BRANCHED1b. J. Exp. Bot. 74: 5124–5139.
|
[8] |
Blilou,I., Xu,J., Wildwater,M., Willemsen,V., Paponov, I., Friml,J., Heidstra,R., Aida,M., Palme,K., and Scheres, B. (2005). The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433: 39–44.
|
[9] |
Booker,J., Auldridge, M., Wills,S., McCarty,D., Klee,H., and Leyser,O. (2004). MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr. Biol. 14: 1232–1238.
|
[10] |
Bunsick,M., Toh,S., Wong,C., Xu, Z., Ly,G., McErlean,C.S.P., Pescetto, G., Nemrish,K.E., Sung,P., Li,J.D., et al. (2020). SMAX1-dependent seed germination bypasses GA signalling in Arabidopsis and Striga. Nat. Plants 6: 646–652.
|
[11] |
Burgie,E.S., Gannam, Z.T.K., McLoughlin,K.E., Sherman,C.D., Holehouse, A.S., Stankey,R.J., and Vierstra,R.D. (2021). Differing biophysical properties underpin the unique signaling potentials within the plant phytochrome photoreceptor families. Proc. Natl. Acad. Sci. U.S.A. 118: e2105649118.
|
[12] |
Burko,Y., Willige, B.C., Seluzicki,A., Novák,O., Ljung,K., and Chory,J. (2022). PIF7 is a master regulator of thermomorphogenesis in shade. Nat. Commun. 13: 4942.
|
[13] |
Bursch,K., Niemann, E.T., Nelson,D.C., and Johansson,H. (2021). Karrikins control seedling photomorphogenesis and anthocyanin biosynthesis through a HY5-BBX transcriptional module. Plant J. 107: 1346–1362.
|
[14] |
Bursch,K., Toledo-Ortiz, G., Pieyre,M., Lohr,M., Braatz, C., and Johansson,H. (2020). Identification of BBX proteins as rate-limiting cofactors of HY5. Nat. Plants 6: 921–928.
|
[15] |
Butler,W.L., Norris, K.H., Siegelman,H.W., and Hendricks,S.B. (1959). Detection, assay, and preliminary purification of the pigment controlling photoresponsive development of plants. Proc. Natl. Acad. Sci. U.S.A. 45: 1703–1708.
|
[16] |
Canamero,R.C., Bakrim, N., Bouly,J.P., Garay,A., Dudkin, E.E., Habricot,Y., and Ahmad,M. (2006). Cryptochrome photoreceptors cry1 and cry2 antagonistically regulate primary root elongation in Arabidopsis thaliana. Planta 224: 995–1003.
|
[17] |
Carbonnel,S., Das,D., Varshney,K., Kolodziej, M.C., Villaécija-Aguilar, J.A., and Gutjahr,C. (2020). The karrikin signaling regulator SMAX1 controls Lotus japonicus root and root hair development by suppressing ethylene biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 117: 21757–21765.
|
[18] |
Chen,D., Lyu,M., Kou,X., Li, J., Yang,Z., Gao,L., Li,Y., Fan,L.M., Shi, H., and Zhong,S. (2022). Integration of light and temperature sensing by liquid-liquid phase separation of phytochrome B. Mol. Cell 82: 3015–3029.
|
[19] |
Chen,W.W., Takahashi, N., Hirata,Y., Ronald,J., Porco,S., Davis,S.J., Nusinow, D.A., Kay,S.A., and Mas,P. (2020). A mobile ELF4 delivers circadian temperature information from shoots to roots. Nat. Plants 6: 416–426.
|
[20] |
Cheng,M.-C., Kathare, P.K., Paik,I., and Huq,E. (2021). Phytochrome signaling networks. Annu. Rev. Plant Biol. 72: 217–244.
|
[21] |
Cho,J.N., Ryu,J.Y., Jeong,Y.M., Park, J., Song,J.J., Amasino,R.M., Noh,B., and Noh,Y.S. (2012). Control of seed germination by light-induced histone arginine demethylation activity. Dev. Cell 22: 736–748.
|
[22] |
Christie,J.M., Arvai,A.S., Baxter,K.J., Heilmann, M., Pratt,A.J., O'Hara,A., Kelly,S.M., Hothorn,M., Smith, B.O., Hitomi,K., et al. (2012). Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science 335: 1492–1496.
|
[23] |
Correll,M.J., and Kiss, J.Z. (2005). The roles of phytochromes in elongation and gravitropism of roots. Plant Cell Physiol. 46: 317–323.
|
[24] |
Crawford,A.J., McLachlan, D.H., Hetherington,A.M., and Franklin,K.A. (2012). High temperature exposure increases plant cooling capacity. Curr. Biol. 22: R396–R397.
|
[25] |
Cuyper,C.D., Struk,S., Braem,L., Gevaert, K., Jaeger,G.D., and Goormachtig,S. (2017). Strigolactones, karrikins and beyond. Plant Cell Environ. 40: 1691–1703.
|
[26] |
De Simone,S., Oka,Y., and Inoue,Y. (2000). Effect of light on root hair formation in Arabidopsis thaliana phytochrome-deficient mutants. J. Plant Res. 113: 63–69.
|
[27] |
De Wit,M., Galvão, V.C., and Fankhauser,C. (2016). Light-mediated hormonal regulation of plant growth and development. Annu. Rev. Plant Biol. 67: 513–537.
|
[28] |
Delker,C., Quint,M., and Wigge,P.A. (2022). Recent advances in understanding thermomorphogenesis signaling. Curr. Opin. Plant Biol. 68: 102231.
|
[29] |
Demarsy,E., and Fankhauser, C. (2009). Higher plants use LOVE to perceive blue light. Curr. Opin. Plant Biol. 12: 69–74.
|
[30] |
Dorone,Y., Boeynaems, S., Flores,E., Jin,B., Hateley, S., Bossi,F., Lazarus,E., Pennington, J.G., Michiels,E., De Decker,M., et al. (2021). A prion-like protein regulator of seed germination undergoes hydration-dependent phase separation. Cell 184: 4284–4298.
|
[31] |
Favory,J.J., Stec,A., Gruber,H., Rizzini, L., Oravecz,A., Funk,M., Albert, A., Cloix,C., Jenkins,G.I., Oakeley, E.J., et al. (2009). Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J. 28: 591–601.
|
[32] |
Ferguson,B.J., and Beveridge, C.A. (2009). Roles for auxin, cytokinin, and strigolactone in regulating shoot branching. Plant Physiol. 149: 1929–1944.
|
[33] |
Findlay,K.M.W., and Jenkins, G.I. (2016). Regulation of UVR8 photoreceptor dimer/monomer photo-equilibrium in Arabidopsis plants grown under photoperiodic conditions. Plant Cell Environ. 39: 1706–1714.
|
[34] |
Finlayson,S.A., Krishnareddy, S.R., Kebrom,T.H., and Casal,J.J. (2010). Phytochrome regulation of branching in Arabidopsis. Plant Physiol. 152: 1914–1927.
|
[35] |
Flematti,G.R., Ghisalberti, E.L., Dixon,K.W., and Trengove,R.D. (2004). A compound from smoke that promotes seed germination. Science 305: 977.
|
[36] |
Fujii,Y., Tanaka, H., Konno,N., Ogasawara,Y., Hamashima, N., Tamura,S., Hasegawa,S., Hayasaki, Y., Okajima,K., and Kodama,Y. (2017). Phototropin perceives temperature based on the lifetime of its photoactivated state. Proc. Natl. Acad. Sci. U.S.A. 114: 9206–9211.
|
[37] |
Gomez-Roldan,V., Fermas, S., Brewer,P.B., Puech-Pagès,V., Dun, E.A., Pillot,J.P., Letisse,F., Matusova, R., Danoun,S., Portais,J.C., et al. (2008). Strigolactone inhibition of shoot branching. Nature 455: 189–194.
|
[38] |
Guo,Y., Zheng,Z., Clair,J.J.L., Chory,J., and Noel, J.P. (2013). Smoke-derived karrikin perception by the α/β-hydrolase KAI2 from Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 110: 8284–8289.
|
[39] |
Hahm,J., Kim,K., Qiu,Y., and Chen, M. (2020). Increasing ambient temperature progressively disassembles Arabidopsis phytochrome B from individual photobodies with distinct thermostabilities. Nat. Commun. 11: 1660.
|
[40] |
Hamon-Josse,M., Villaécija-Aguilar, J.A., Ljung,K., Leyser,O., Gutjahr, C., and Bennett,T. (2022). KAI2 regulates seedling development by mediating light-induced remodelling of auxin transport. New Phytol. 235: 126–140.
|
[41] |
Han,X., Huang,X., and Deng,X.W. (2020). The photomorphogenic central repressor COP1: Conservation and functional diversification during evolution. Plant Commun. 1: 100044.
|
[42] |
Hayes,S., Velanis, C.N., Jenkins,G.I., and Franklin,K.A. (2014). UV-B detected by the UVR8 photoreceptor antagonizes auxin signaling and plant shade avoidance. Proc. Natl. Acad. Sci. U.S.A. 111: 11894–11899.
|
[43] |
Hills,P.N., and van Staden, J. (2003). Thermoinhibition of seed germination. S. Afr. J. Bot. 69: 455–461.
|
[44] |
Hornitschek,P., Lorrain, S., Zoete,V., Michielin,O., and Fankhauser, C. (2009). Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers. EMBO J. 28: 3893–3902.
|
[45] |
Hu,J., Ji,Y., Hu,X., Sun, S., and Wang,X. (2019). BES1 functions as the co-regulator of D53-like SMXLs to inhibit BRC1 expression in strigolactone-regulated shoot branching in Arabidopsis. Plant Commun. 1: 100014.
|
[46] |
Hu,W., Franklin, K.A., Sharrock,R.A., Jones,M.A., Harmer, S.L., and Lagarias,J.C. (2013). Unanticipated regulatory roles for Arabidopsis phytochromes revealed by null mutant analysis. Proc. Natl. Acad. Sci. U.S.A. 110: 1542–1547.
|
[47] |
Huang,H., McLoughlin, K.E., Sorkin,M.L., Burgie,E.S., Bindbeutel, R.K., Vierstra,R.D., and Nusinow,D.A. (2019). PCH1 regulates light, temperature, and circadian signaling as a structural component of phytochrome B-photobodies in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 116: 8603–8608.
|
[48] |
Huang,X., Ouyang, X., Yang,P., Lau,O.S., Chen,L., Wei,N., and Deng, X.W. (2013). Conversion from CUL4-based COP1-SPA E3 apparatus to UVR8-COP1-SPA complexes underlies a distinct biochemical function of COP1 under UV-B. Proc. Natl. Acad. Sci. U.S.A. 110: 16669–16674.
|
[49] |
Huq,E., and Quail, P.H. (2002). PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO J. 21: 2441–2450.
|
[50] |
Ibañez,C., Delker, C., Martinez,C., Bürstenbinder,K., Janitza, P., Lippmann,R., Ludwig,W., Sun,H., James,G.V., Klecker, M., et al. (2018). Brassinosteroids dominate hormonal regulation of plant thermomorphogenesis via BZR1. Curr. Biol. 28: 303–310.
|
[51] |
Ito,S., Song,Y.H., and Imaizumi,T. (2012). LOV domain-containing F-box proteins: Light-dependent protein degradation modules in Arabidopsis. Mol. Plant 5: 573–582.
|
[52] |
James,A.B., Monreal, J.A., Nimmo,G.A., Kelly,C.L., Herzyk, P., Jenkins,G.I., and Nimmo,H.G. (2008). The circadian clock in Arabidopsis roots is a simplified slave version of the clock in shoots. Science 322: 1832–1835.
|
[53] |
Jenkins,G.I. (2017). Photomorphogenic responses to ultraviolet-B light. Plant Cell Environ. 40: 2544–2557.
|
[54] |
Jeong,A.R., Lee,S.S., Han,Y.J., Shin, A.Y., Baek,A., Ahn,T., Kim,M.G., Kim,Y.S., Lee, K.W., Nagatani,A., et al. (2016). New constitutively active phytochromes exhibit light-independent signaling activity. Plant Physiol. 171: 2826–2840.
|
[55] |
Jia,K.P., Luo,Q., He,S.B., Lu, X.D., and Yang,H.Q. (2014). Strigolactone-regulated hypocotyl elongation is dependent on cryptochrome and phytochrome signaling pathways in Arabidopsis. Mol. Plant 7: 528–540.
|
[56] |
Jiang,L., Liu,X., Xiong,G., Liu, H., Chen,F., Wang,L., Meng,X., Liu,G., Yu, H., Yuan,Y., et al. (2013). DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 504: 401–405.
|
[57] |
Jones,M.A., Hu,W., Litthauer,S., Lagarias,J.C., and Harmer, S.L. (2015). A constitutively active allele of phytochrome b maintains circadian robustness in the absence of light. Plant Physiol. 169: 814–825.
|
[58] |
Jung,J.H., Domijan, M., Klose,C., Biswas,S., Ezer,D., Gao,M., Khattak, A.K., Box,M.S., Charoensawan,V., Cortijo, S., et al. (2016). Phytochromes function as thermosensors in Arabidopsis. Science 354: 886–889.
|
[59] |
Kasahara,M., Kagawa, T., Sato,Y., Kiyosue,T., and Wada, M. (2004). Phototropins mediate blue and red light-induced chloroplast movements in Physcomitrella patens. Plant Physiol. 135: 1388–1397.
|
[60] |
Keuskamp,D.H., Pollmann, S., Voesenek,L.A.C.J., Peeters,A.J.M., and Pierik, R. (2010). Auxin transport through PIN-FORMED 3 (PIN3) controls shade avoidance and fitness during competition. Proc. Natl. Acad. Sci. U.S.A. 107: 22740–22744.
|
[61] |
Khosla,A., Morffy, N., Li,Q., Faure,L., Chang,S.H., Yao,J., Zheng, J., Cai,M.L., Stanga,J., Flematti, G.R., et al. (2020). Structure-function analysis of SMAX1 reveals domains that mediate its karrikin-induced proteolysis and interaction with the receptor KAI2. Plant Cell 32: 2639–2659.
|
[62] |
Kim,C., Kwon,Y., Jeong,J., Kang, M., Lee,G.S., Moon,J.H., Lee,H.J., Park,Y.I., and Choi, G. (2023). Phytochrome B photobodies are comprised of phytochrome B and its primary and secondary interacting proteins. Nat. Commun. 14: 1708.
|
[63] |
Kim,D.H., Yamaguchi, S., Lim,S., Oh,E., Park,J., Hanada,A., Kamiya, Y., and Choi,G. (2008). SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5. Plant Cell 20: 1260–1277.
|
[64] |
Kim,J.H., Lee,H.J., Jung,J.H., Lee, S., and Park,C.M. (2017a). HOS1 facilitates the phytochrome B-mediated inhibition of PIF4 function during hypocotyl growth in Arabidopsis. Mol. Plant 10: 274–284.
|
[65] |
Kim,J.Y., Park,Y.J., Lee,J.H., and Park, C.M. (2022). SMAX1 integrates karrikin and light signals into GA-mediated hypocotyl growth during seedling establishment. Plant Cell Physiol. 63: 932–943.
|
[66] |
Kim,S., Hwang,G., Lee,S., Zhu, J.Y., Paik,I., Nguyen,T.T., Kim,J., and Oh,E. (2017b). High ambient temperature represses anthocyanin biosynthesis through degradation of HY5. Front. Plant Sci. 8: 1787.
|
[67] |
Klose,C., Nagy,F., and Schäfer,E. (2020). Thermal reversion of plant phytochromes. Mol. Plant 13: 386–397.
|
[68] |
Koini,M.A., Alvey,L., Allen,T., Tilley, C.A., Harberd,N.P., Whitelam,G.C., and Franklin, K.A. (2009). High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr. Biol. 19: 408–413.
|
[69] |
Kong,S.G., and Wada, M. (2011). New insights into dynamic actin-based chloroplast photorelocation movement. Mol. Plant 4: 771–781.
|
[70] |
Lee,B.D., Kim,M.R., Kang,M.Y., Cha, J.Y., Han,S.H., Nawkar,G.M., Sakuraba, Y., Lee,S.Y., Imaizumi,T., McClung, C.R., et al. (2017a). The F-box protein FKF1 inhibits dimerization of COP1 in the control of photoperiodic flowering. Nat. Commun. 8: 2259.
|
[71] |
Lee,B.D., Yim,Y., Cañibano,E., Kim,S.H., García-León, M., Rubio,V., Fonseca,S., and Paek, N.C. (2022). CONSTITUTIVE PHOTOMORPHOGENIC 1 promotes seed germination by destabilizing RGA-LIKE 2 in Arabidopsis. Plant Physiol. 189: 1662–1676.
|
[72] |
Lee,H.J., Ha,J.H., Kim,S.G., Choi, H.K., Kim,Z.H., Han,Y.J., Kim,J.I., Oh,Y., Fragoso, V., Shin,K., et al. (2016). Stem-piped light activates phytochrome B to trigger light responses in Arabidopsis thaliana roots. Sci. Signal. 9: ra106.
|
[73] |
Lee,H.J., Park,Y.J., Ha,J.H., Baldwin, I.T., and Park,C.M. (2017b). Multiple routes of light signaling during root photomorphogenesis. Trends Plant Sci. 22: 803–812.
|
[74] |
Lee,I., Kim,K., Lee,S., Lee, S., Hwang,E., Shin,K., Kim,D., Choi,J., Choi, H., Cha,J.S., et al. (2018). A missense allele of KARRIKIN-INSENSITIVE2 impairs ligand-binding and downstream signaling in Arabidopsis thaliana. J. Exp. Bot. 69: 3609–3623.
|
[75] |
Legris,M., Ince,Y.Ç., and Fankhauser,C. (2019). Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. Nat. Commun. 10: 5219.
|
[76] |
Legris,M., Klose,C., Burgie,E.S., Rojas, C.C.R., Neme,M., Hiltbrunner,A., Wigge,P.A., Schäfer,E., Vierstra,R.D., and Casal, J.J. (2016). Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354: 897–900.
|
[77] |
Li,Q., Martín-Fontecha, E.S., Khosla,A., White,A.R.F., Chang,S., Cubas,P., and Nelson, D.C. (2022a). The strigolactone receptor D14 targets SMAX1 for degradation in response to GR24 treatment and osmotic stress. Plant Commun. 3: 100303.
|
[78] |
Li,W., Nguyen, K.H., Chu,H.D., Ha,C.V., Watanabe, Y., Osakabe,Y., Leyva-González,M.A., Sato,M., Toyooka, K., Voges,L., et al. (2017). The karrikin receptor KAI2 promotes drought resistance in Arabidopsis thaliana. PLoS Genet. 13: e1007076.
|
[79] |
Li,X., Liu,Z., Ren,H., Kundu, M., Zhong,F.W., Wang,L., Gao,J., and Zhong,D. (2022b). Dynamics and mechanism of dimer dissociation of photoreceptor UVR8. Nat. Commun. 13: 93.
|
[80] |
Li,X., Wang,Q., Yu,X., Liu, H., Yang,H., Zhao,C., Liu,X., Tan,C., Klejnot, J., Zhong,D., et al. (2011). Arabidopsis cryptochrome 2 (CRY2) functions by the photoactivation mechanism distinct from the tryptophan (trp) triad-dependent photoreduction. Proc. Natl. Acad. Sci. U.S.A. 108: 20844–20849.
|
[81] |
Liang,Y., Ward,S., Li,P., Bennett, T., and Leyser,O. (2016). SMAX1-like7 signals from the nucleus to regulate shoot development in Arabidopsis via partially EAR motif-independent mechanisms. Plant Cell 28: 1581–1601.
|
[82] |
Liu,H., Yu,X., Li,K., Klejnot, J., Yang,H., Lisiero,D., and Lin, C. (2008). Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 322: 1535–1539.
|
[83] |
Lim,S., Park,J., Lee,N., Jeong, J., Toh,S., Watanabe,A., Kim,J., Kang,H., Kim, D.H., Kawakami,N., et al. (2013). ABA-insensitive3, ABA-insensitive5, and DELLAs interact to activate the expression of SOMNUS and other high-temperature-inducible genes in imbibed seeds in Arabidopsis. Plant Cell 25: 4863–4878.
|
[84] |
Lin,W., and Wang, H. (2004). Arabidopsis FHY3/FAR1 gene family and distinct roles of its members in light control of Arabidopsis development. Plant Physiol. 136: 4010–4022.
|
[85] |
Lloyd,A., Brockman, A., Aguirre,L., Campbell,A., Bean,A., Cantero,A., and Gonzalez, A. (2017). Advances in the MYB-bHLH-WD repeat (MBW) pigment regulatory model: Addition of a WRKY factor and co-option of an anthocyanin MYB for betalain regulation. Plant Cell Physiol. 58: 1431–1441.
|
[86] |
Ma,D., Li,X., Guo,Y., Chu, J., Fang,S., Yan,C., Noel,J.P., and Liu,H. (2016). Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light. Proc. Natl. Acad. Sci. U.S.A. 113: 224–229.
|
[87] |
Matusova,R., Rani,K., Verstappen,F.W.A., Franssen,M.C.R., Beale,M.H., and Bouwmeester,H.J. (2005). The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol. 139: 920–934.
|
[88] |
Mawphlang,O.L., and Kharshiing, E.V. (2017). Photoreceptor mediated plant growth responses: implications for photoreceptor engineering toward improved performance in crops. Front. Plant Sci. 8: 1181.
|
[89] |
Mayzlish-Gati,E., De-Cuyper, C., Goormachtig,S., Beeckman,T., Vuylsteke, M., Brewer,P.B., Beveridge,C.A., Yermiyahu, U., Kaplan,Y., Enzer,Y., et al. (2012). Strigolactones are involved in root response to low phosphate conditions in Arabidopsis. Plant Physiol. 160: 1329–1341.
|
[90] |
Mayzlish-Gati,E., LekKala, S.P., Resnick,N., Wininger,S., Bhattacharya, C., Lemcoff,J.H., Kapulnik,Y., and Koltai, H. (2010). Strigolactones are positive regulators of light-harvesting genes in tomato. J. Exp. Bot. 61: 3129–3136.
|
[91] |
Meng,Y., Varshney, K., Incze,N., Badics,E., Kamran, M., Davies,S.F., Oppermann,L.M.F., Magne, K., Dalmais,M., Bendahmane,A., et al. (2022). KARRIKIN INSENSITIVE2 regulates leaf development, root system architecture and arbuscular-mycorrhizal symbiosis in Brachypodium distachyon. Plant J. 109: 1559–1574.
|
[92] |
Miao,L., Zhao,J., Yang,G., Xu, P., Cao,X., Du,S., Xu,F., Jiang,L., Zhang, S., Wei,X., et al. (2022). Arabidopsis cryptochrome 1 undergoes COP1 and LRBs-dependent degradation in response to high blue light. New Phytol. 234: 1347–1362.
|
[93] |
Moon,J., Zhu,L., Shen,H., and Huq, E. (2008). PIF1 directly and indirectly regulates chlorophyll biosynthesis to optimize the greening process in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 105: 9433–9438.
|
[94] |
Mostofa,M.G., Abdelrahman, M., Rahman,M.M., Tran,C.D., Nguyen, K.H., Watanabe,Y., Itouga,M., Li,W., Wang,Z., Mochida, K., et al. (2023). Karrikin receptor KAI2 coordinates salt tolerance mechanisms in Arabidopsis thaliana. Plant Cell Physiol. 63: 1927–1942.
|
[95] |
Nelson,D.C., Flematti, G.R., Riseborough,J.A., Ghisalberti,E.L., Dixon, K.W., and Smith,S.M. (2010). Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 107: 7095–7100.
|
[96] |
Nelson,D.C., Riseborough, J.A., Flematti,G.R., Stevens,J., Ghisalberti, E.L., Dixon,K.W., and Smith,S.M. (2009). Karrikins discovered in smoke trigger Arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light. Plant Physiol. 149: 863–873.
|
[97] |
Nelson,D.C., Scaffidi, A., Dun,E.A., Waters,M.T., Flematti, G.R., Dixon,K.W., Beveridge,C.A., Ghisalberti, E.L., and Smith,S.M. (2011). F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 108: 8897–8902.
|
[98] |
Nemhauser,J., and Chory, J. (2002). Photomorphogenesis. Arabidopsis Book 1: e0054.
|
[99] |
Nozue,K., Covington, M.F., Duek,P.D., Lorrain,S., Frankhauser, C., Harmer,S.L., and Maloof,J.N. (2007). Rhythmic growth explained by coincidence between internal and external cues. Nature 448: 358–361.
|
[100] |
Oh,E., Yamaguchi, S., Kamiya,Y., Bae,G., Chung,W.I., and Choi,G. (2006). Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis. Plant J. 47: 124–139.
|
[101] |
Oláh,D., Feigl,G., Molnár,Á., Ördög,A., and Kolbert, Z. (2020). Strigolactones interact with nitric oxide in regulating root system architecture of Arabidopsis thaliana. Front. Plant Sci. 11: 1019.
|
[102] |
Osterlund,M.T., Hardtke, C.S., Wei,N., and Deng,X.W. (2000). Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405: 462–466.
|
[103] |
Park,Y.J., Kim,J.Y., Lee,J.H., Han, S.H., and Park,C.M. (2021). External and internal reshaping of plant thermomorphogenesis. Trends Plant Sci. 26: 810–821.
|
[104] |
Park,Y.J., Kim,J.Y., Lee,J.H., Lee, B.D., Paek,N.C., and Park,C.M. (2020). GIGANTEA shapes the photoperiodic rhythms of thermomorphogenic growth in Arabidopsis. Mol. Plant 13: 459–470.
|
[105] |
Park,Y.J., Kim,J.Y., and Park,C.M. (2022). SMAX1 potentiates phytochrome B-mediated hypocotyl thermomorphogenesis. Plant Cell 34: 2671–2687.
|
[106] |
Park,Y.J., Lee,H.J., Gil,K.E., Kim, J.Y., Lee,J.H., Lee,H., Cho,H.T., Vu,L.D., Smet, I.D., and Park,C.M. (2019). Developmental programming of thermonastic leaf movement. Plant Physiol. 180: 1185–1197.
|
[107] |
Park,Y.J., Lee,H.J., Ha,J.H., Kim, J.Y., and Park,C.M. (2017). COP1 conveys warm temperature information to hypocotyl thermomorphogenesis. New Phytol. 215: 269–280.
|
[108] |
Park,Y.J., and Park, C.M. (2019). Physicochemical modeling of the phytochrome-mediated photothermal sensing. Sci. Rep. 9: 10485.
|
[109] |
Paulišić,S., Qin,W., Verasztó, H.A., Then,C., Alary,B., Nogue,F., Tsiantis,M., Hothorn, M., and Martínez-García, J.F. (2021). Adjustment of the PIF7-HFR1 transcriptional module activity controls plant shade adaptation. EMBO J. 40: e104273.
|
[110] |
Pedmale,U.V., Huang,S.S.C., Zander,M., Cole, B.J., Hetzel,J., Ljung,K., Reis,P.A.B., Sridevi,P., Nito, K., Nery,J.R., et al. (2016). Cryptochromes interact directly with PIFs to control plant growth in limiting blue light. Cell 164: 233–245.
|
[111] |
Pham,V.N., Kathare, P.K., and Huq,E. (2018). Phytochromes and phytochrome interacting factors. Plant Physiol. 176: 1025–1038.
|
[112] |
Piskurewicz,U., Sentandreu, M., Iwasaki,M., Glauser,G., and Lopez-Molina, L. (2023). The Arabidopsis endosperm is a temperature-sensing tissue that implements seed thermoinhibition through phyB. Nat. Commun. 14: 1202.
|
[113] |
Rameau,C., Bertheloot, J., Leduc,N., Andrieu,B., Foucher, F., and Sakr,S. (2015). Multiple pathways regulate shoot branching. Front. Plant Sci. 5: 741.
|
[114] |
Rizzini,L., Favory, J.J., Cloix,C., Faggionato,D., O'Hara, A., Kaiserli,E., Baumeister,R., Schäfer, E., Nagy,F., Jenkins,G.I., et al. (2011). Perception of UV-B by the Arabidopsis UVR8 protein. Science 332: 103–106.
|
[115] |
Sang,Q., Fan,L., Liu,T., Qiu, Y., Du,J., Mo,B., Chen,M., and Chen,X. (2023). MicroRNA156 conditions auxin sensitivity to enable growth plasticity in response to environmental changes in Arabidopsis. Nat. Commun. 14: 1449.
|
[116] |
Sakuraba,Y., Bülbül, S., Piao,W., Choi,G., and Paek, N.C. (2017). Arabidopsis EARLY FLOWERING3 increases salt tolerance by suppressing salt stress response pathways. Plant J. 92: 1106–1120.
|
[117] |
Sakuraba,Y., Jeong,J., Kang,M.Y., Kim, J., Paek,N.C., and Choi,G. (2014). Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis. Nat. Commun. 5: 4636.
|
[118] |
Schwarz,S., Grande, A.V., Bujdoso,N., Saedler,H., and Huijser, P. (2008). The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol. Biol. 67: 183–195.
|
[119] |
Seo,H.S., Watanabe, E., Tokutomi,S., Nagatani,A., and Chua, N.H. (2004). Photoreceptor ubiquitination by COP1 E3 ligase desensitizes phytochrome A signaling. Genes Dev. 18: 617–622.
|
[120] |
Sepulveda,C., Guzmán, M.A., Li,Q., Villaécija-Aguilar,J.A., Martinez,S.E., Kamran, M., Khosla,A., Liu,W., Gendron, J.M., Gutjahr,C., et al. (2022). KARRIKIN UP-REGULATED F-BOX 1 (KUF1) imposes negative feedback regulation of karrikin and KAI2 ligand metabolism in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 119: e2112820119.
|
[121] |
Seto,Y., Yasui,R., Kameoka,H., Tamiru, M., Cao,M., Terauchi,R., Sakurada, A., Hirano,R., Kisugi,T., Hanada, A., et al. (2019). Strigolactone perception and deactivation by a hydrolase receptor DWARF14. Nat. Commun. 10: 191.
|
[122] |
Shen,H., Zhu,L., Bu,Q.Y., and Huq, E. (2012). MAX2 affects multiple hormones to promote photomorphogenesis. Mol. Plant 5: 762.
|
[123] |
Shi,H., Shen,X., Liu,R., Xue, C., Wei,N., Deng,X.W., and Zhong, S. (2016). The red light receptor phytochrome B directly enhances substrate-E3 ligase interactions to attenuate ethylene responses. Dev. Cell 39: 597–610.
|
[124] |
Shi,H., Wang,X., Mo,X., Tang, C., Zhong,S., and Deng,X.W. (2015). Arabidopsis DET1 degrades HFR1 but stabilizes PIF1 to precisely regulate seed germination. Proc. Natl. Acad. Sci. U.S.A. 112: 3817–3822.
|
[125] |
Shin,D.H., Choi,M., Kim,K., Bang, G., Cho,M., Choi,S.B., Choi,G., and Park,Y.I. (2013). HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in Arabidopsis. FEBS Lett. 587: 1543–1547.
|
[126] |
Shin,J., Kim,K., Kang,H., Zulfugarov, I.S., Bae,G., Lee,C.H., Lee,D., and Choi,G. (2009). Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors. Proc. Natl. Acad. Sci. U.S.A. 106: 7660–7665.
|
[127] |
Shin,J., Park,E., and Choi,G. (2007). PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis. Plant J. 49: 981–994.
|
[128] |
Song,Y.H., Shim,J.S., Kinmonth-Schultz,H.A., and Imaizumi,T. (2015). Photoperiodic flowering: Time measurement mechanisms in leaves. Annu. Rev. Plant Biol. 66: 441–464.
|
[129] |
Soundappan,I., Bennett, T., Morffy,N., Liang,Y., Stanga, J.P., Abbas,A., Leyser,O., and Nelson, D.C. (2015). SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis. Plant Cell 27: 3143–3159.
|
[130] |
Stafen,C.F., Kleine-Vehn, J., and Maraschin,F.D.S. (2022). Signaling events for photomorphogenic root development. Trends Plant Sci. 27: 1266–1282.
|
[131] |
Stanga,J.P., Smith,S.M., Briggs,W.R., and Nelson, D.C. (2013). SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in Arabidopsis. Plant Physiol. 163: 318–330.
|
[132] |
Stirnberg,P., van de Sande, K., and Leyser,H.M.O. (2002). MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129: 1131–1141.
|
[133] |
Stracke,R., Favory, J.J., Gruber,H., Bartelniewoehner,L., Bartels, S., Binkert,M., Funk,M., Weisshaar, B., and Ulm,R. (2010). The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFG1/MYB12 gene in response to light and ultraviolet-B radiation. Plant Cell Environ. 33: 88–103.
|
[134] |
Sun,J., Qi,L., Li,Y., Chu, J., and Li,C. (2012). PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLoS Genet. 8: e1002594.
|
[135] |
Takemiya,A., Inoue,S.I., Doi,M., Kinoshita, T., and Shimazaki,K.I. (2005). Phototropins promote plant growth in response to blue light in low light environments. Plant Cell 17: 1120–1127.
|
[136] |
Takemiya,A., Sugiyama, N., Fujimoto,H., Tsutsumi,T., Yamauchi, S., Hiyama,A., Tada,Y., Christie, J.M., and Shimazaki,K.I. (2013). Phosphorylation of BLUS1 kinase by phototropins is a primary step in stomatal opening. Nat. Commun. 4: 2094.
|
[137] |
Taylor,A.O. (1968). In vitro phytochrome dark reversion process. Plant Physiol. 43: 767–774.
|
[138] |
Terzaghi,W.B., and Cashmore, A.R. (1995). Photomorphogenesis. Seeing the light in plant development. Curr. Biol. 5: 466–468.
|
[139] |
Tian,H., Watanabe, Y., Nguyen,K.H., Tran,C.D., Abdelrahman, M., Liang,X., Xu,K., Sepulveda, C., Mostofa,M.G., Ha,C.V., et al. (2022). KARRIKIN UPREGULATED F-BOX 1 negatively regulates drought tolerance in Arabidopsis. Plant Physiol. 190: 2671–2687.
|
[140] |
Toh,S., Imamura, A., Watanabe,A., Nakabayashi,K., Okamoto, M., Jikumaru,Y., Hanada,A., Aso,Y., Ishiyama,K., Tamura, N., et al. (2008). High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiol. 146: 1368–1385.
|
[141] |
Toh,S., Kamiya, Y., Kawakami,N., Nambara,E., McCourt, P., and Tsuchiya,Y. (2012). Thermoinhibition uncovers a role for strigolactones in Arabidopsis seed germination. Plant Cell Physiol. 53: 107–117.
|
[142] |
Tsuchiya,Y., Vidaurre, D., Toh,S., Hanada,A., Nambara, E., Kamiya,Y., Yamaguchi,S., and McCourt, P. (2010). A small-molecule screen identifies new functions for the plant hormone strigolactones. Nat. Chem. Biol. 6: 741–749.
|
[143] |
Ueda,H., and Kusaba, M. (2015). Strigolactone regulates leaf senescence in concert with ethylene in Arabidopsis. Plant Physiol. 169: 138–147.
|
[144] |
Umehara,M., Hanada, A., Yoshida,S., Akiyama,K., Arite,T., Takeda-Kamiya,N., Magome,H., Kamiya, Y., Shirasu,K., Yoneyama,K., et al. (2008). Inhibition of shoot branching by new terpenoid plant hormones. Nature 455: 195–200.
|
[145] |
Van Buskirk,E.K., Reddy, A.K., Nagatani,A., and Chen,M. (2014). Photobody localization of phytochrome B is tightly correlated with prolonged and light-dependent inhibition of hypocotyl elongation in the dark. Plant Physiol. 165: 595–607.
|
[146] |
van Gelderen,K., Kang,C., and Pierik,R. (2018). Light signaling, root development, and plasticity. Plant Physiol. 176: 1049–1060.
|
[147] |
Villaécija-Aguilar,J.A., Hamon-Josse,M., Carbonnel, S., Kretschmar,A., Schmidt,C., Dawid,C., Bennett,T., and Gutjahr, C. (2019). SMAX1/SMXL2 regulate root and root hair development downstream of KAI2-mediated signalling in Arabidopsis. PLoS Genet. 15: e1008327.
|
[148] |
Von Arnim,A., and Deng, X.W. (1996). Light control of seedling development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 215–243.
|
[149] |
Wang,H., and Deng, X.W. (2002). Arabidopsis FHY3 defines a key phytochrome A signaling component directly interacting with its homologous partner FAR1. EMBO J. 21: 1339–1349.
|
[150] |
Wang,L., Wang,B., Jiang,L., Liu, X., Li,X., Lu,Z., Meng,X., Wang,Y., Smith, S.M., and Li,J. (2015). Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-Like SMXL repressor proteins for ubiquitination and degradation. Plant Cell 27: 3128–3142.
|
[151] |
Wang,L., Wang,B., Yu,H., Guo, H., Lin,T., Kou,L., Wang,A., Shao,N., Ma, H., Xiong,G., et al. (2020a). Transcriptional regulation of strigolactone signalling in Arabidopsis. Nature 583: 277–281.
|
[152] |
Wang,L., Waters, M.T., and Smith,S.M. (2018a). Karrikin-KAI2 signalling provides Arabidopsis seeds with tolerance to abiotic stress and inhibits germination under conditions unfavourable to seedling establishment. New Phytol. 219: 605–618.
|
[153] |
Wang,L., Xu,Q., Yu,H., Ma, H., Li,X., Yang,J., Chu,J., Xie,Q., Wang, Y., Smith,S.M., et al. (2020b). Strigolactone and karrikin signaling pathways elicit ubiquitination and proteolysis of SMXL2 to regulate hypocotyl elongation in Arabidopsis. Plant Cell 32: 2251–2270.
|
[154] |
Wang,S., Li,L., Xu,P., Lian, H., Wang,W., Xu,F., Mao,Z., Zhang,T., and Yang, H. (2018b). CRY1 interacts directly with HBI1 to regulate its transcriptional activity and photomorphogenesis in Arabidopsis. J. Exp. Bot. 69: 3867–3881.
|
[155] |
Wang,Y., Sun,S., Zhu,W., Jia, K., Yang,H., and Wang,X. (2013). Strigolactone/MAX2-induced degradation of brassinosteroid transcriptional effector BES1 regulates shoot branching. Dev. Cell 27: 681–688.
|
[156] |
Wang,Y., Wang,Y., Song,Z., and Zhang, H. (2016). Repression of MYBL2 by both microRNA858a and HY5 leads to the activation of anthocyanin biosynthetic pathway in Arabidopsis. Mol. Plant 9: 1395–1405.
|
[157] |
Waters,M.T., and Smith, S.M. (2013). KAI2- and MAX2-mediated responses to karrikins and strigolactones are largely independent of HY5 in Arabidopsis seedlings. Mol. Plant 6: 63–75.
|
[158] |
Wei,C.Q., Chien,C.W., Ai,L.F., Zhao, J., Zhang,Z., Li,K.H., Burlingame, A.L., Sun,Y., and Wang,Z.Y. (2016). The Arabidopsis B-box protein BZS1/BBX20 interacts with HY5 and mediates strigolactone regulation of photomorphogenesis. J. Genet. Genomics 43: 555–563.
|
[159] |
Wu,D., Hu,Q., Yan,Z., Chen, W., Yan,C., Huang,X., Zhang,J., Yang,P., Deng, H., Wang,J., et al. (2012). Structural basis of ultraviolet-B perception by UVR8. Nature 484: 214–219.
|
[160] |
Xie,Y., Liu,Y., Ma,M., Zhou, Q., Zhao,Y., Zhao,B., Wang,B., Wei,H., and Wang, H. (2020). Arabidopsis FHY3 and FAR1 integrate light and strigolactone signaling to regulate branching. Nat. Commun. 11: 1955.
|
[161] |
Xie,Y., Tan,H., Ma,Z., and Huang, J. (2016). DELLA proteins promote anthocyanin biosynthesis via sequestering MYBL2 and JAZ suppressors of the MYB/bHLH/WD40 complex in Arabidopsis thaliana. Mol. Plant 9: 711–721.
|
[162] |
Xu,D., Jiang,Y., Li,J., Lin, F., Holm,M., and Deng,X.W. (2016). BBX21, an Arabidopsis B-box protein, directly activates HY5 and is targeted by COP1 for 26S proteasome-mediated degradation. Proc. Natl. Acad. Sci. U.S.A. 113: 7655–7660.
|
[163] |
Xu,P., Hu,J., and Cai,W. (2022). Karrikin signaling regulates hypocotyl shade avoidance response by modulating auxin homeostasis in Arabidopsis. New Phytol. 236: 1748–1761.
|
[164] |
Xu,P., Hu,J., Chen,H., and Cai, W. (2023). SMAX1 interacts with DELLA protein to inhibit seed germination under weak light conditions via gibberellin biosynthesis in Arabidopsis. Cell Rep. 42: 112740.
|
[165] |
Yang,J., Lin,R., Sullivan,J., Hoecker, U., Liu,B., Xu,L., Deng,X.W., and Wang,H. (2005). Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis. Plant Cell 17: 804–821.
|
[166] |
Yang,Z., Liu,B., Su,J., Liao, J., Lin,C., and Oka,Y. (2017). Cryptochromes orchestrate transcription regulation of diverse blue light responses in plants. Photochem. Photobiol. 93: 112–127.
|
[167] |
Yang,Y., and Liu, H. (2020). Coordinated shoot and root responses to light signaling in Arabidopsis. Plant Commun. 1: 100026.
|
[168] |
Yao,R., Ming,Z., Yan,L., Li, S., Wang,F., Ma,S., Yu,C., Yang,M., Chen, L., Chen,L., et al. (2016). DWARF14 is a non-canonical hormone receptor for strigolactones. Nature 536: 469–473.
|
[169] |
Ying,S., Yang,W., Li,P., Hu, Y., Lu,S., Zhou,Y., Huang,J., Hancock,J.T., and Hu,X. (2022). Phytochrome B enhances seed germination tolerance to high temperature by reducing S-nitrosylation of HFR1. EMBO Rep. 23: e54371.
|
[170] |
Yoneyama,K., Awad,A.A., Xie,X., Yoneyama, K., and Takeuchi,Y. (2010). Strigolactones as germination stimulants for root parasitic plants. Plant Cell Physiol. 51: 1095–1103.
|
[171] |
Yu,Z., Ma,J., Zhang,M., Li, X., Sun,Y., Zhang,M., and Ding, Z. (2023). Auxin promotes hypocotyl elongation by enhancing BZR1 nuclear accumulation in Arabidopsis. Sci. Adv. 9: eade2493.
|
[172] |
Yu,Z.C., Zheng,X.T., Lin,W., He, W., Shao,L., and Peng,C.L. (2021). Photoprotection of Arabidopsis leaves under short-term high light treatment: The antioxidant capacity is more important than the anthocyanin shielding effect. Plant Physiol. Biochem. 166: 258–269.
|
[173] |
Zhao,Y., Shi,H., Pan,Y., Lyu, M., Yang,Z., Kou,X., Deng,X.W., and Zhong,S. (2023). Sensory circuitry controls cytosolic calcium-mediated phytochrome B phototransduction. Cell 186: 1230–1243.
|
[174] |
Zheng,J., Hong,K., Zeng,L., Wang, L., Kang,S., Qu,M., Dai,J., Zou,L., Zhu, L., Tang,Z., et al. (2020). Karrikin signaling acts parallel to and additively with strigolactone signaling to regulate rice mesocotyl elongation in darkness. Plant Cell 32: 2780–2805.
|
[175] |
Zheng,X., Liu,F., Yang,X., Li, W., Chen,S., Yue,X., Jia,Q., and Sun,X. (2023). The MAX2-KAI2 module promotes salicylic acid-mediated immune responses in Arabidopsis. J. Integr. Plant Biol. 65: 1566–1584.
|
[176] |
Zhong,S., Zhao,M., Shi,T., Shi, H., An,F., Zhao,Q., and Guo, H. (2009). EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis seedlings. Proc. Natl. Acad. Sci. U.S.A. 106: 21431–21436.
|
[177] |
Zhou,F., Lin,Q., Zhu,L., Ren, Y., Zhou,K., Shabek,N., Wu,F., Mao,H., Dong, W., Gan,L., et al. (2013). D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling. Nature 504: 406–410.
|
[178] |
Zoltowski,B.D., and Imaizumi, T. (2014). Structure and function of the ZTL/FKF1/LKP2 group proteins in Arabidopsis. Enzymes 35: 213–239.
|
/
〈 |
|
〉 |