PIF4 interacts with ABI4 to serve as a transcriptional activator complex to promote seed dormancy by enhancing ABA biosynthesis and signaling

Xiaofeng Luo, Yujia Dai, Baoshan Xian, Jiahui Xu, Ranran Zhang, Muhammad Saad Rehmani, Chuan Zheng, Xiaoting Zhao, Kaitao Mao, Xiaotong Ren, Shaowei Wei, Lei Wang, Juan He, Weiming Tan, Junbo Du, Weiguo Liu, Shu Yuan, Kai Shu

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (5) : 909-927. DOI: 10.1111/jipb.13615
Research Article

PIF4 interacts with ABI4 to serve as a transcriptional activator complex to promote seed dormancy by enhancing ABA biosynthesis and signaling

Author information +
History +

Abstract

Transcriptional regulation plays a key role in the control of seed dormancy, and many transcription factors (TFs) have been documented. However, the mechanisms underlying the interactions between different TFs within a transcriptional complex regulating seed dormancy remain largely unknown. Here, we showed that TF PHYTOCHROME-INTERACTING FACTOR4 (PIF4) physically interacted with the abscisic acid (ABA) signaling responsive TF ABSCISIC ACID INSENSITIVE4 (ABI4) to act as a transcriptional complex to promote ABA biosynthesis and signaling, finally deepening primary seed dormancy. Both pif4 and abi4 single mutants exhibited a decreased primary seed dormancy phenotype, with a synergistic effect in the pif4/abi4 double mutant. PIF4 binds to ABI4 to form a heterodimer, and ABI4 stabilizes PIF4 at the protein level, whereas PIF4 does not affect the protein stabilization of ABI4. Subsequently, both TFs independently and synergistically promoted the expression of ABI4 and NCED6, a key gene for ABA anabolism. The genetic evidence is also consistent with the phenotypic, physiological and biochemical analysis results. Altogether, this study revealed a transcriptional regulatory cascade in which the PIF4–ABI4 transcriptional activator complex synergistically enhanced seed dormancy by facilitating ABA biosynthesis and signaling.

Keywords

ABA / ABI4 / PIF4 / seed dormancy and germination / transcriptional complex

Cite this article

Download citation ▾
Xiaofeng Luo, Yujia Dai, Baoshan Xian, Jiahui Xu, Ranran Zhang, Muhammad Saad Rehmani, Chuan Zheng, Xiaoting Zhao, Kaitao Mao, Xiaotong Ren, Shaowei Wei, Lei Wang, Juan He, Weiming Tan, Junbo Du, Weiguo Liu, Shu Yuan, Kai Shu. PIF4 interacts with ABI4 to serve as a transcriptional activator complex to promote seed dormancy by enhancing ABA biosynthesis and signaling. Journal of Integrative Plant Biology, 2024, 66(5): 909‒927 https://doi.org/10.1111/jipb.13615

References

[1]
Ballester,P., Martinez-Godoy, M.A., Ezquerro,M., Navarrete-Gomez,M., Trigueros, M., Rodriguez-Concepcion,M., and Ferrandiz,C. (2021). A transcriptional complex of NGATHA and bHLH transcription factors directs stigma development in Arabidopsis. Plant Cell 33: 3645–3657.
[2]
Bossi,F., Cordoba, E., Dupre,P., Mendoza,M.S., Roman,C.S., and Leon,P. (2009). The Arabidopsis ABA-INSENSITIVE (ABI) 4 factor acts as a central transcription activator of the expression of its own gene, and for the induction of ABI5 and SBE2.2 genes during sugar signaling. Plant J. 59: 359–374.
[3]
Bryant,F.M., Hughes, D., Hassani-Pak,K., and Eastmond,P.J. (2019). Basic LEUCINE ZIPPER TRANSCRIPTION FACTOR67 transactivates DELAY OF GERMINATION1 to establish primary seed dormancy in Arabidopsis. Plant Cell 31: 1276–1288.
[4]
Chandrasekaran,U., Luo, X.F., Zhou,W.G., and Shu,K. (2020). Multifaceted signaling networks mediated by abscisic acid insensitive 4. Plant Commun. 1: 100040.
[5]
Chen,H.H., Ruan,J.X., Chu,P., Fu, W., Liang,Z.W., Li,Y., Tong,J.H., Xiao,L.T., Liu, J., Li,C.L., et al. (2020a). AtPER1 enhances primary seed dormancy and reduces seed germination by suppressing the ABA catabolism and GA biosynthesis in Arabidopsis seeds. Plant J. 101: 310–323.
[6]
Chen,H.H., Tong,J.H., Fu,W., Liang, Z.W., Ruan,J.X., Yu,Y.G., Song,X., Yuan,L.B., Xiao, L.T., Liu,J., et al. (2020b). The H3K27me3 demethylase RELATIVE OF EARLY FLOWERING6 suppresses seed dormancy by inducing abscisic acid catabolism. Plant Physiol. 184: 1969–1978.
[7]
Chen,J.J., Wang,W., Qin,W.Q., Men, S.Z., Li,H.L., Mitsuda,N., Ohme-Takagi, M., and Wu,A.M. (2022). Transcription factors KNAT3 and KNAT4 are essential for integument and ovule formation in Arabidopsis. Plant Physiol. 191: 463–478.
[8]
Chen,K., Li,G.J., Bressan,R.A., Song,C.P., Zhu,J.K., and Zhao,Y. (2020c). Abscisic acid dynamics, signaling, and functions in plants. J. Integr. Plant Biol. 62: 25–54.
[9]
Chen,M.L., Huang,Y.Q., Liu,J.Q., Yuan, B.F., and Feng,Y.Q. (2011). Highly sensitive profiling assay of acidic plant hormones using a novel mass probe by capillary electrophoresis-time of flight-mass spectrometry. J. Chromatogr. B. 879: 938–944.
[10]
Chen,X.Z., and Xu, Y.H. (2022). Structural insights into assembly of transcription preinitiation complex. Curr. Opin. Struc. Biol. 75: 102404.
[11]
Cheng,M.C., Kathare, P.K., Paik,I., and Huq,E. (2021). Phytochrome Signaling Networks. Annu. Rev. Plant Biol. 72: 217–244.
[12]
Choi,H., and Oh, E. (2016). PIF4 integrates multiple environmental and hormonal signals for plant growth regulation in Arabidopsis. Mol. Cells 39: 587–593.
[13]
Clough,S.J., and Bent, A.F. (1998). Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735–743.
[14]
Dong,Z.J., Yu,Y.W., Li,S.H., Wang, J., Tang,S.J., and Huang,R.F. (2016). Abscisic acid antagonizes ethylene production through the ABI4-mediated transcriptional repression of ACS4 and ACS8 in Arabidopsis. Mol. Plant 9: 126–135.
[15]
Finkelstein,R.R. (1994). Mutations at 2 new Arabidopsis Aba response loci are similar to the Abi3 mutations. Plant J. 5: 765–771.
[16]
Gao,H., Song,W., Severing,E., Vayssieres, A., Huettel,B., Franzen,R., Richter, R., Chai,J., and Coupland,G. (2022). PIF4 enhances DNA binding of CDF2 to co-regulate target gene expression and promote Arabidopsis hypocotyl cell elongation. Nat. Plants 8: 1082–1093.
[17]
Graeber,K., Linkies, A., Steinbrecher,T., Mummenhoff,K., Tarkowska, D., Tureckova,V., Ignatz,M., Sperber, K., Voegele,A., de Jong,H., et al. (2014). DELAY OF GERMINATION 1 mediates a conserved coat-dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination. Proc. Natl. Acad. Sci. U.S.A. 111: E3571–E3580.
[18]
Grosveld,F., Rodriguez, P., Meier,N., Krpic,S., Pourfarzad, F., Papadopoulos,P., Kolodziej,K., Patrinos, G.P., Hostert,A., and Strouboulis,J. (2005). Isolation and characterization of hematopoietic transcription factor complexes by in vivo biotinylation tagging and mass spectrometry. Ann. Ny. Acad. Sci. 1054: 55–67.
[19]
Hoang,H.H., Bailly, C., Corbineau,F., and Leymarie,J. (2013). Induction of secondary dormancy by hypoxia in barley grains and its hormonal regulation. J. Exp. Bot. 64: 2017–2025.
[20]
Huang,J., Zhao,X., and Chory,J. (2019). The Arabidopsis transcriptome responds specifically and dynamically to high light stress. Cell Rep. 29: 4186–4199.
[21]
Huang,M., Hu,Y., Liu,X., Li, Y., and Hou,X. (2015). Arabidopsis LEAFY COTYLEDON1 mediates postembryonic development via interacting with PHYTOCHROME-INTERACTING FACTOR4. Plant Cell 27: 3099–3111.
[22]
Huang,X.Z., Zhang,X.Y., Gong,Z.Z., Yang, S.H., and Shi,Y.T. (2017). ABI4 represses the expression of type-A ARRs to inhibit seed germination in Arabidopsis. Plant J. 89: 354–365.
[23]
Kelley,D.R., Arreola, A., Gallagher,T.L., and Gasser,C.S. (2012). ETTIN (ARF3) physically interacts with KANADI proteins to form a functional complex essential for integument development and polarity determination in Arabidopsis. Development 139: 1105–1109.
[24]
Kim,D.H., Yamaguchi, S., Lim,S., Oh,E., Park,J., Hanada,A., Kamiya, Y., and Choi,G. (2008). SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5. Plant Cell 20: 1260–1277.
[25]
Koliopoulos,M.G., Muhammad, R., Roumeliotis,T.I., Beuron,F., Choudhary, J.S., and Alfieri,C. (2022). Structure of a nucleosome-bound MuvB transcription factor complex reveals DNA remodelling. Nat. Commun. 13: 5075.
[26]
Kribelbauer,J.F., Loker, R.E., Feng,S., Rastogi,C., Abe,N., Rube,H.T., Bussemaker, H.J., and Mann,R.S. (2020). Context-dependent gene regulation by homeodomain transcription factor complexes revealed by shape-readout deficient proteins. Mol. Cell 78: 152–167.
[27]
Kucera,B., Cohn,M.A., and Leubner-Metzger,G. (2005). Plant hormone interactions during seed dormancy release and germination. Seed Sci. Res. 15: 281–307.
[28]
Lan,H., Heng,Y., Li,J., Zhang, M., Bian,Y., Chu,L., Jiang,Y., Wang,X., Xu, D., and Deng,X.W. (2022). COP1 SUPPRESSOR 6 represses the PIF4 and PIF5 action to promote light-inhibited hypocotyl growth. J. Integr. Plant Biol. 64: 2097–2110.
[29]
Lau,O.S., and Deng, X.W. (2010). Plant hormone signaling lightens up: Integrators of light and hormones. Curr. Opin. Plant Biol. 13: 571–577.
[30]
Lee,I., Kim,E., Choi,S., Kim, D., Hong,W.Y., Choi,J., Choi,H., Kim,J., Sable, G.A., Markkandan,K., et al. (2021a). A Raf-like kinase is required for smoke-induced seed dormancy in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 118: e2020636118.
[31]
Lee,S., Wang,W., and Huq,E. (2021b). Spatial regulation of thermomorphogenesis by HY5 and PIF4 in Arabidopsis. Nat. Commun. 12: 3656.
[32]
Li,N., Bo,C., Zhang,Y., and Wang, L. (2021). PHYTOCHROME INTERACTING FACTORS PIF4 and PIF5 promote heat stress induced leaf senescence in Arabidopsis. J. Exp. Bot. 72: 4577–4589.
[33]
Li,N., Zhang,Y., He,Y., Wang, Y., and Wang,L. (2020). Pseudo response regulators regulate photoperiodic hypocotyl growth by repressing PIF4/5 transcription. Plant Physiol. 183: 686–699.
[34]
Li,T., Li,H., Lian,H., Song, P., Wang,Y., Duan,J., Song,Z., Cao,Y., Xu, D., Li,J., et al. (2022). SICKLE represses photomorphogenic development of Arabidopsis seedlings via HY5- and PIF4-mediated signaling. J. Integr. Plant Biol. 64: 1706–1723.
[35]
Liao,J., Deng,B., Cai,X., Yang, Q., Hu,B., Cong,J., Zhang,Y., Wang,G., Xin, G., Li,Y., et al. (2022). A time-resolved transcriptome analysis reveals regulation of Arabidopsis seed dormancy by the transcription factors WOX11/12. J. Exp. Bot. 74: 1090–1106.
[36]
Liu,L., Zhang,Y., Tang,S., Zhao, Q., Zhang,Z., Zhang,H., Dong,L., Guo,H., and Xie, Q. (2010). An efficient system to detect protein ubiquitination by agroinfiltration in Nicotiana benthamiana. Plant J. 61: 893–903.
[37]
Luo,F., Zhang,Q., Xin,H., Liu, H., Yang,H., Doblin,M.S., Bacic,A., and Li,L. (2022). A Phytochrome B-PIF4-MYC2/MYC4 module inhibits secondary cell wall thickening in response to shaded light. Plant Commun. 3: 100416.
[38]
Luo,X., Dai,Y., Zheng,C., Yang, Y., Chen,W., Wang,Q., Chandrasekaran, U., Du,J., Liu,W., and Shu, K. (2021). The ABI4-RbohD/VTC2 regulatory module promotes reactive oxygen species (ROS) accumulation to decrease seed germination under salinity stress. New Phytol. 229: 950–962.
[39]
Luo,X.F., Xu,J.H., Zheng,C.A., Yang, Y.Z., Wang,L., Zhang,R.R., Ren,X.T., Wei,S.W., Aziz, U., Du,J.B., et al. (2023). Abscisic acid inhibits primary root growth by impairing ABI4-mediated cell cycle and auxin biosynthesis. Plant Physiol. 191: 265–279.
[40]
Ma,D.B., Li,X., Guo,Y.X., Chu, J.F., Fang,S., Yan,C.Y., Noel,J.P., and Liu,H.T. (2016). Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light. Proc. Natl. Acad. Sci. U.S.A. 113: 224–229.
[41]
Miao,C.B., Wang,Z., Zhang,L., Yao, J.J., Hua,K., Liu,X., Shi,H.Z., and Zhu,J.K. (2019). The grain yield modulator miR156 regulates seed dormancy through the gibberellin pathway in rice. Nat. Commun. 10: 3822.
[42]
Nakabayashi,K., Bartsch, M., Xiang,Y., Miatton,E., Pellengahr, S., Yano,R., Seo,M., and Soppe, W.J.J. (2012). The time required for dormancy release in arabidopsis is determined by DELAY OF GERMINATION1 protein levels in freshly harvested seeds. Plant Cell 24: 2826–2838.
[43]
Ni,M., Tepperman, J.M., and Quail,P.H. (1998). PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 95: 657–667.
[44]
Penfield,S. (2017). Seed dormancy and germination. Curr. Biol. 27: R874–R878.
[45]
Penfield,S., Josse,E.M., and Halliday,K.J. (2010). A role for an alternative splice variant of PIF6 in the control of Arabidopsis primary seed dormancy. Plant Mol. Biol. 73: 89–95.
[46]
Pham,V.N., Kathare, P.K., and Huq,E. (2018). Phytochromes and phytochrome interacting factors. Plant Physiol. 176: 1025–1038.
[47]
Pope,S.D., and Medzhitov, R. (2018). Emerging principles of gene expression programs and their regulation. Mol. Cell 71: 389–397.
[48]
Qiu,Y., Pasoreck, E.K., Yoo,C.Y., He,J., Wang,H., Bajracharya,A., Li,M., Larsen, H.D., Cheung,S., and Chen,M. (2021). RCB initiates Arabidopsis thermomorphogenesis by stabilizing the thermoregulator PIF4 in the daytime. Nat. Commun. 12: 2042.
[49]
Sano,N., and Marion-Poll, A. (2021). ABA metabolism and homeostasis in seed dormancy and germination. Int. J. Mol. Sci. 22: 5069.
[50]
Shu,K., Chen,Q., Wu,Y.R., Liu, R.J., Zhang,H.W., Wang,P.F., Li,Y.L., Wang,S.F., Tang, S.Y., Liu,C.Y., et al. (2016a). ABI4 mediates antagonistic effects of abscisic acid and gibberellins at transcript and protein levels. Plant J. 85: 348–361.
[51]
Shu,K., Chen,Q., Wu,Y.R., Liu, R.J., Zhang,H.W., Wang,S.F., Tang,S.Y., Yang,W.Y., and Xie, Q. (2016b). ABSCISIC ACID-INSENSITIVE 4 negatively regulates flowering through directly promoting Arabidopsis FLOWERING LOCUS C transcription. J. Exp. Bot. 67: 195–205.
[52]
Shu,K., Liu,X.D., Xie,Q., and He, Z.H. (2016c). Two faces of one seed: Hormonal regulation of dormancy and germination. Mol. Plant 9: 34–45.
[53]
Shu,K., Zhang,H.W., Wang,S.F., Chen, M.L., Wu,Y.R., Tang,S.Y., Liu,C.Y., Feng,Y.Q., Cao, X.F., and Xie,Q. (2013). ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in Arabidopsis. PLoS Genet. 9: e1003577.
[54]
Shu,K., Zhou,W.G., and Yang,W.Y. (2018). APETALA 2-domain-containing transcription factors: Focusing on abscisic acid and gibberellins antagonism. New Phytol. 217: 977–983.
[55]
Soderman,E.M., Brocard, I.M., Lynch,T.J., and Finkelstein,R.R. (2000). Regulation and function of the arabidopsis ABA-insensitive4 gene in seed and abscisic acid response signaling networks. Plant Physiol. 124: 1752–1765.
[56]
Song,S., Willems, L.A.J., Jiao,A., Zhao,T., Eric Schranz, M., and Bentsink,L. (2022). The membrane associated NAC transcription factors ANAC060 and ANAC040 are functionally redundant in the inhibition of seed dormancy in Arabidopsis thaliana. J. Exp. Bot. 73: 5514–5528.
[57]
Sun,J., Qi,L., Li,Y., Zhai, Q., and Li,C. (2013). PIF4 and PIF5 transcription factors link blue light and auxin to regulate the phototropic response in Arabidopsis. Plant Cell 252102–2114.
[58]
Sun,J.Q., Qi,L.L., Li,Y.N., Chu, J.F., and Li,C.Y. (2012). PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLoS Genet. 8: e1002594.
[59]
Vaistij,F.E., Gan,Y., Penfield,S., Gilday, A.D., Dave,A., He,Z., Josse,E.M., Choi,G., Halliday, K.J., and Graham,I.A. (2013). Differential control of seed primary dormancy in Arabidopsis ecotypes by the transcription factor SPATULA. Proc. Natl. Acad. Sci. U.S.A. 110: 10866–10871.
[60]
Wei,X., Li,Y., Zhu,X., Liu, X., Ye,X., Zhou,M., and Zhang, Z. (2022). The GATA transcription factor TaGATA1 recruits demethylase TaELF6-A1 and enhances seed dormancy in wheat by directly regulating TaABI5. J. Integr. Plant Biol. 65: 1262–1276.
[61]
Wind,J.J., Peviani, A., Snel,B., Hanson,J., and Smeekens, S.C. (2013). ABI4: Versatile activator and repressor. Trends Plant Sci. 18: 125–132.
[62]
Xu,F., Tang,J., Wang,S., Cheng, X., Wang,H., Ou,S., Gao,S., Li,B., Qian, Y., Gao,C., et al. (2022). Antagonistic control of seed dormancy in rice by two bHLH transcription factors. Nat. Genet. 54: 1972–1982.
[63]
Xu,Y., and Zhu, Z. (2021). PIF4 and PIF4-interacting proteins: At the nexus of plant light, temperature and hormone signal integrations. Int. J. Mol. Sci. 22: 10304.
[64]
Xue,H., Meng,J.J., Lei,P., Cao, Y.X., An,X., Jia,M., Li,Y., Liu,H.F., Sheen, J., Liu,X.Y., et al. (2022). ARF2-PIF5 interaction controls transcriptional reprogramming in the ABS3-mediated plant senescence pathway. EMBO J. 41: e110988.
[65]
Yan,J.W., Fang,L., Yang,L., He, H., Huang,Y., Liu,Y., and Zhang, A.Y. (2020a). Abscisic acid positively regulates l-arabinose metabolism to inhibit seed germination through ABSCISIC ACID INSENSITIVE4-mediated transcriptional promotions of MUR4 in Arabidopsis thaliana. New Phytol. 225: 823–834.
[66]
Yan,Y., Li,C., Dong,X., Li, H., Zhang,D., Zhou,Y., Jiang,B., Peng,J., Qin, X., Cheng,J., et al. (2020b). MYB30 is a key negative regulator of Arabidopsis photomorphogenic development that promotes PIF4 and PIF5 protein accumulation in the light. Plant Cell 32: 2196–2215.
[67]
Yang,L., Liu,S., and Lin,R. (2020). The role of light in regulating seed dormancy and germination. J. Integr. Plant Biol. 62: 1310–1326.
[68]
Yano,R., Kanno,Y., Jikumaru,Y., Nakabayashi, K., Kamiya,Y., and Nambara,E. (2009). CHOTTO1, a putative double APETALA2 repeat transcription factor, is involved in abscisic acid-mediated repression of gibberellin biosynthesis during seed germination in Arabidopsis. Plant Physiol. 151: 641–654.
[69]
Zhang,H., Yang,B., Liu,W.Z., Li, H., Wang,L., Wang,B., Deng,M., Liang,W., Deyholos, M.K., and Jiang,Y.Q. (2014). Identification and characterization of CBL and CIPK gene families in canola (Brassica napus L.). BMC Plant Biol. 14: 8.
[70]
Zhao,H., and Bao, Y. (2021). PIF4: Integrator of light and temperature cues in plant growth. Plant Sci. 313: 111086.
[71]
Zhou,C., Lin,Q., Lan,J., Zhang, T., Liu,X., Miao,R., Mou,C., Nguyen,T., Wang, J., Zhang,X., et al. (2020). WRKY transcription factor OsWRKY29 represses seed dormancy in rice by weakening abscisic acid response. Front. Plant Sci. 11: 691.
[72]
Zhou,M.J., Zhang,J., Shen,J., Zhou, H., Zhao,D.D., Gotor,C., Romero, L.C., Fu,L., Li,Z.M., Yang,J., et al. (2021). Hydrogen sulfide-linked persulfidation of ABI4 controls ABA responses through the transactivation of MAPKKK18 in Arabidopsis. Mol. Plant 14: 921–936.

RIGHTS & PERMISSIONS

2024 2024 Institute of Botany, Chinese Academy of Sciences.
PDF

Accesses

Citations

Detail

Sections
Recommended

/