Temporal control of the Aux/IAA genes BnIAA32 and BnIAA34 mediates Brassica napus dual shade responses
Yafei Li, Yiyi Guo, Yue Cao, Pengguo Xia, Dongqing Xu, Ning Sun, Lixi Jiang, Jie Dong
Temporal control of the Aux/IAA genes BnIAA32 and BnIAA34 mediates Brassica napus dual shade responses
Precise responses to changes in light quality are crucial for plant growth and development. For example, hypocotyls of shade-avoiding plants typically elongate under shade conditions. Although this typical shade-avoidance response (TSR) has been studied in Arabidopsis (Arabidopsis thaliana), the molecular mechanisms underlying shade tolerance are poorly understood. Here we report that B. napus (Brassica napus) seedlings exhibit dual shade responses. In addition to the TSR, B. napus seedlings also display an atypical shade response (ASR), with shorter hypocotyls upon perception of early-shade cues. Genome-wide selective sweep analysis indicated that ASR is associated with light and auxin signaling. Moreover, genetic studies demonstrated that phytochrome A (BnphyA) promotes ASR, whereas BnphyB inhibits it. During ASR, YUCCA8 expression is activated by early-shade cues, leading to increased auxin biosynthesis. This inhibits hypocotyl elongation, as young B. napus seedlings are highly sensitive to auxin. Notably, two non-canonical AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) repressor genes, BnIAA32 and BnIAA34, are expressed during this early stage. BnIAA32 and BnIAA34 inhibit hypocotyl elongation under shade conditions, and mutations in BnIAA32 and BnIAA34 suppress ASR. Collectively, our study demonstrates that the temporal expression of BnIAA32 and BnIAA34 determines the behavior of B. napus seedlings following shade-induced auxin biosynthesis.
Brassica napus / high-density planting / IAA32/34 / light signal transduction / shade response / temporal gene expression
[1] |
Boomsma,C.R., Santini, J.B., Tollenaar,M., and Vyn,T.J. (2009). Maize morphophysiological responses to intense crowding and low nitrogen availability: an analysis and review. Agron. J. 101: 1426–1452.
|
[2] |
Boylan,M.T., and Quail, P.H. (1989). Oat phytochrome is biologically active in transgenic tomatoes. Plant Cell 1: 765–773.
|
[3] |
Cao,M., Chen,R., Li,P., Yu, Y., Zheng,R., Ge,D., Zheng,W., Wang,X., Gu, Y., Gelova,Z., et al. (2019). TMK1-mediated auxin signalling regulates differential growth of the apical hook. Nature 568: 240–243.
|
[4] |
Carriedo,L.G., Maloof, J.N., and Brady,S.M. (2016). Molecular control of crop shade avoidance. Curr. Opin. Plant Biol. 30: 151–158.
|
[5] |
Casal,J.J. (2013). Photoreceptor signaling networks in plant responses to shade. Annu. Rev. Plant Biol. 64: 403–427.
|
[6] |
Casal,J.J., Sanchez, R.A., and Botto,J.F. (1998). Modes of action of phytochromes. J. Exp. Bot. 49: 127–138.
|
[7] |
Chalhoub,B., Denoeud, F., Liu,S., Parkin,I.A., Tang,H., Wang,X., Chiquet, J., Belcram,H., Tong,C., Samans, B., et al. (2014). Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345: 950–953.
|
[8] |
Clough,S.J., and Bent, A.F. (1998). Floral dip: A simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735–743.
|
[9] |
Finlayson,S.A., Krishnareddy, S.R., Kebrom,T.H., and Casal,J.J. (2010). Phytochrome regulation of branching in Arabidopsis. Plant Physiol. 152: 1914–1927.
|
[10] |
Franklin,K.A. (2008). Shade avoidance. New Phytol. 179: 930–944.
|
[11] |
Ganesan,M., Han,Y.J., Bae,T.W., Hwang, O.J., Chandrasekkhar,T., Shin,A.Y., Goh,C.H., Nishiguchi,S., Song,I.J., Lee,H.Y., et al. (2012). Overexpression of phytochrome A and its hyperactive mutant improves shade tolerance and turf quality in creeping bentgrass and zoysiagrass. Planta 236: 1135–1150.
|
[12] |
Gommers,C.M., Visser, E.J., St Onge,K.R., Voesenek,L.A., and Pierik, R. (2013). Shade tolerance: When growing tall is not an option. Trends Plant Sci. 18: 65–71.
|
[13] |
Gommers,C.M.M., Keuskamp, D.H., Buti,S., van Veen,H., Koevoets, I.T., Reinen,E., Voesenek,L.A.C.J., and Pierik, R. (2017). Molecular profiles of contrasting shade response strategies in wild plants: Differential control of immunity and shoot elongation. Plant Cell 29: 331–344.
|
[14] |
Guo,Y.Y., Kuang,L.H., Xu,Y., Yan, T., Jiang,L.X., Dong,J., and Wu, D.Z. (2022). Construction of a worldwide core collection of rapeseed and association analysis for waterlogging tolerance. Plant Growth Regul. 98: 321–328.
|
[15] |
Hu,J., Chen,B., Zhao,J., Zhang, F., Xie,T., Xu,K., Gao,G., Yan,G., Li, H., Li,L., et al. (2022). Genomic selection and genetic architecture of agronomic traits during modern rapeseed breeding. Nat. Genet. 54: 694–704.
|
[16] |
Lau,O.S., and Deng, X.W. (2010). Plant hormone signaling lightens up: integrators of light and hormones. Curr. Opin. Plant Biol. 13: 571–577.
|
[17] |
Leivar,P., Tepperman, J.M., Cohn,M.M., Monte,E., Al-Sady, B., Erickson,E., and Quail,P.H. (2012). Dynamic antagonism between phytochromes and PIF family basic helix-loop-helix factors induces selective reciprocal responses to light and shade in a rapidly responsive transcriptional network in Arabidopsis the plant cell. Plant Cell 24: 1398–1419.
|
[18] |
Li,L., Ljung,K., Breton,G., Schmitz, R.J., Pruneda-Paz,J., Cowing-Zitron,C., Cole, B.J., Ivans,L.J., Pedmale,U.V., Jung,H.S., et al. (2012). Linking photoreceptor excitation to changes in plant architecture. Genes Dev. 26: 785–790.
|
[19] |
Liu,H., Ding,Y.D., Zhou,Y.Q., Jin, W.Q., Xie,K.B., and Chen,L.L. (2017). CRISPR-P 2.0: An improved CRISPR-Cas9 tool for genome editing in plants. Mol. Plant 10: 530–532.
|
[20] |
Liu,Y., Jafari, F., and Wang,H. (2021). Integration of light and hormone signaling pathways in the regulation of plant shade avoidance syndrome. Abiotech 2: 131–145.
|
[21] |
Lorrain,S., Allen,T., Duek,P.D., Whitelam, G.C., and Fankhauser,C. (2008). Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J. 53: 312–323.
|
[22] |
Lv,B.S., Yu,Q.Q., Liu,J.J., Wen, X.J., Yan,Z.W., Hu,K.Q., Li,H.B., Kong,X.P., Li, C.L., Tian,H.Y., et al. (2020). Non-canonical AUX/IAA protein IAA33 competes with canonical AUX/IAA repressor IAA5 to negatively regulate auxin signaling. EMBO J. 39: e101515.
|
[23] |
Lyu,X.G., Cheng,Q.C., Qin,C., Li, Y.H., Xu,X.Y., Ji,R.H., Mu,R.L., Li,H.Y., Zhao, T., Liu,J., et al. (2021). GmCRY1s modulate gibberellin metabolism to regulate soybean shade avoidance in response to reduced blue light. Mol. Plant 14: 298–314.
|
[24] |
Martinez-Garcia,J.F., Huq, E., and Quail,P.H. (2000). Direct targeting of light signals to a promoter element-bound transcription factor. Science 288: 859–863.
|
[25] |
Martinez-Garcia,J.F., Gallemi, M., Molina-Contreras,M.J., Llorente,B., Bevilaqua, M.R.R., and Quail,P.H. (2014). The shade avoidance syndrome in Arabidopsis: The antagonistic role of phytochrome A and B differentiates vegetation proximity and canopy shade. PLoS ONE 9: e109275.
|
[26] |
Melis,A., and Harvey, G.W. (1981). Regulation of photosystem stoichiometry, Chlorophyll-A and Chlorophyll-B content and relation to chloroplast ultrastructure. Biochim. Biophys. Acta 637: 138–145.
|
[27] |
Molina-Contreras,M.J., Paulisic, S., Then,C., Moreno-Romero,J., Pastor-Andreu, P., Morelli,L., Roig-Villanova,I., Jenkins, H., Hallab,A., Gan,X.C., et al. (2019). Photoreceptor activity contributes to contrasting responses to shade in Cardamine and Arabidopsis seedlings. Plant Cell 31: 2649–2663.
|
[28] |
Nozue,K., Tat,A.V., Kumar Devisetty,U., Robinson,M., Mumbach, M.R., Ichihashi,Y., Lekkala,S., and Maloof, J.N. (2015). Shade avoidance components and pathways in adult plants revealed by phenotypic profiling. PLoS Genet. 11: e1004953.
|
[29] |
Paulisic,S., Qin,W.T., Veraszto,H.A., Then,C., Alary,B., Nogue,F., Tsiantis, M., Hothorn,M., and Martinez-Garcia,J.F. (2021). Adjustment of the PIF7-HFR1 transcriptional module activity controls plant shade adaptation. EMBO J. 40: e104273.
|
[30] |
Pedmale,U.V., Huang,S.S.C., Zander,M., Cole, B.J., Hetzel,J., Ljung,K., Reis,P.A.B., Sridevi,P., Nito, K., Nery,J.R., et al. (2016). Cryptochromes interact directly with PIFs to control plant growth in limiting blue light. Cell 164: 233–245.
|
[31] |
Reich,P.B., Tjoelker, M.G., Walters,M.B., Vanderklein,D.W., and Bushena, C. (1998). Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light. Funct. Ecol. 12: 327–338.
|
[32] |
Roig-Villanova,I., and Martinez-Garcia, J.F. (2016). Plant responses to vegetation proximity: A whole life avoiding shade. Front. Plant Sci. 7: 236.
|
[33] |
Rondanini,D.P., del Pilar Vilarino, M., Roberts,M.E., Polosa,M.A., and Botto, J.F. (2014). Physiological responses of spring rapeseed (Brassica napus) to red/far-red ratios and irradiance during pre- and post-flowering stages. Physiol. Plant. 152: 784–794.
|
[34] |
Roques,S.E., and Berry, P.M. (2016). The yield response of oilseed rape to plant population density. J. Agric. Sci. 154: 305–320.
|
[35] |
Sawers,R.J., Sheehan, M.J., and Brutnell,T.P. (2005). Cereal phytochromes: targets of selection, targets for manipulation? Trends Plant Sci. 10: 138–143.
|
[36] |
Song,J.M., Guan,Z., Hu,J., Guo, C., Yang,Z., Wang,S., Liu,D., Wang,B., Lu, S., Zhou,R., et al. (2020). Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat. Plants 6: 34–45.
|
[37] |
Valladares,F., and Niinemets, U. (2008). Shade tolerance, a key plant feature of complex nature and consequences. Ann. Rev. Ecol. Evol. System. 39: 237–257.
|
[38] |
Wang,J., and Chen, H. (2020). A novel CRISPR/Cas9 system for efficiently generating Cas9-free multiplex mutants in Arabidopsis. Abiotech 1: 6–14.
|
[39] |
Watson,A., Ghosh,S., Williams,M.J., Cuddy,W.S., Simmonds, J., Rey,M.D., Hatta,M.A.M., Hinchliffe, A., Steed,A., Reynolds,D., et al. (2018). Speed breeding is a powerful tool to accelerate crop research and breeding. Nat. Plants 4: 23–29.
|
[40] |
Wu,D.Z., Liang,Z., Yan,T., Xu, Y., Xuan,L.J., Tang,J., Zhou,G., Lohwasser,U., Hua,S.J., Wang,H.Y., et al. (2019). Whole-genome resequencing of a worldwide collection of rapeseed accessions reveals the genetic basis of ecotype divergence. Mol. Plant 12: 30–43.
|
[41] |
Xie,Y., Zhu,Y., Wang,N., Luo, M., Ota,T., Guo,R., Takahashi, I., Yu,Z., Aizezi,Y., Zhang,L., et al. (2022). Chemical genetic screening identifies nalacin as an inhibitor of GH3 amido synthetase for auxin conjugation. Proc. Natl. Acad. Sci. U. S. A. 119: e2209256119.
|
[42] |
Yang,C., Xie,F., Jiang,Y., Li, Z., Huang,X., and Li,L. (2018). Phytochrome A negatively regulates the shade avoidance response by increasing auxin/indole acidic acid protein stability. Dev. Cell 44: 29–41 e24.
|
[43] |
Yoo,C.Y., He,J., Sang,Q., Qiu, Y., Long,L., Kim,R.J., Chong,E.G., Hahm,J., Morffy, N., Zhou,P., et al. (2021). Direct photoresponsive inhibition of a p53-like transcription activation domain in PIF3 by Arabidopsis phytochrome B. Nat. Commun. 12: 5614.
|
[44] |
Zhou,Y.Y., Yang,L., Duan,J., Cheng, J.K., Shen,Y.P., Wang,X.J., Han,R., Li,H., Li, Z., Wang,L.H., et al. (2018). Hinge region of Arabidopsis phyA plays an important role in regulating phyA function. Proc. Natl. Acad. Sci. U. S. A. 115: E11864–E11873.
|
/
〈 | 〉 |