RACK1A promotes hypocotyl elongation by scaffolding light signaling components in Arabidopsis

Yajuan Fu, Wei Zhu, Yeling Zhou, Yujing Su, Zhiyong Li, Dayan Zhang, Dong Zhang, Jinyu Shen, Jiansheng Liang

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (5) : 956-972. DOI: 10.1111/jipb.13651
Research Article

RACK1A promotes hypocotyl elongation by scaffolding light signaling components in Arabidopsis

Author information +
History +

Abstract

Plants deploy versatile scaffold proteins to intricately modulate complex cell signaling. Among these, RACK1A (Receptors for Activated C Kinase 1A) stands out as a multifaceted scaffold protein functioning as a central integrative hub for diverse signaling pathways. However, the precise mechanisms by which RACK1A orchestrates signal transduction to optimize seedling development remain largely unclear. Here, we demonstrate that RACK1A facilitates hypocotyl elongation by functioning as a flexible platform that connects multiple key components of light signaling pathways. RACK1A interacts with PHYTOCHROME INTERACTING FACTOR (PIF)3, enhances PIF3 binding to the promoter of BBX11 and down-regulates its transcription. Furthermore, RACK1A associates with ELONGATED HYPOCOTYL 5 (HY5) to repress HY5 biochemical activity toward target genes, ultimately contributing to hypocotyl elongation. In darkness, RACK1A is targeted by CONSTITUTIVELY PHOTOMORPHOGENIC (COP)1 upon phosphorylation and subjected to COP1-mediated degradation via the 26 S proteasome system. Our findings provide new insights into how plants utilize scaffold proteins to regulate hypocotyl elongation, ensuring proper skoto- and photo-morphogenic development.

Keywords

Arabidopsis / hypocotyl development / light signaling components / RACK1 / scaffold protein

Cite this article

Download citation ▾
Yajuan Fu, Wei Zhu, Yeling Zhou, Yujing Su, Zhiyong Li, Dayan Zhang, Dong Zhang, Jinyu Shen, Jiansheng Liang. RACK1A promotes hypocotyl elongation by scaffolding light signaling components in Arabidopsis. Journal of Integrative Plant Biology, 2024, 66(5): 956‒972 https://doi.org/10.1111/jipb.13651

References

[1]
Amorim-Silva,V., García-Moreno, Á., Castillo,A.G., Lakhssassi,N., Esteban Del Valle, A., Pérez-Sancho,J., Li,Y., Posé, D., Pérez-Rodriguez,J., Lin,J., et al. (2019). TTL proteins scaffold brassinosteroid signaling components at the plasma membrane to optimize signal transduction in Arabidopsis. Plant Cell 31: 1807–1828.
[2]
Burko,Y., Seluzicki, A., Zander,M., Pedmale,U.V., Ecker,J.R., and Chory,J. (2020). Chimeric activators and repressors define HY5 activity and reveal a light-regulated feedback mechanism. Plant Cell 32: 967–983.
[3]
Cao,J., Liang,Y., Yan,T., Wang, X., Zhou,H., Chen,C., Zhang,Y., Zhang,B., Zhang, S., Liao,J., et al. (2022). The photomorphogenic repressors BBX28 and BBX29 integrate light and brassinosteroid signaling to inhibit seedling development in Arabidopsis. Plant Cell 34: 2266–2285.
[4]
Chen,F., Li,B., Li,G., Charron, J.B., Dai,M., Shi,X., and Deng, X.W. (2014). Arabidopsis phytochrome A directly targets numerous promoters for individualized modulation of genes in a wide range of pathways. Plant Cell 26: 1949–1966.
[5]
Chen,H., Zou,Y., Shang,Y., Lin, H., Wang,Y., Cai,R., Tang,X., and Zhou,J.M. (2008). Firefly luciferase complementation imaging assay for protein-protein interactions in plants. Plant Physiol. 146: 368–376.
[6]
Chen,J.G., Ullah,H., Temple,B., Liang, J., Guo,J., Alonso,J.M., Ecker,J.R., and Jones,A.M. (2006). RACK1 mediates multiple hormone responsiveness and developmental processes in Arabidopsis. J. Exp. Bot. 57: 2697–2708.
[7]
Cheng,M.C., Kathare, P.K., Paik,I., and Huq,E. (2021). Phytochrome signaling networks. Annu. Rev. Plant Biol. 72: 217–244.
[8]
Cheng,Z., Li,J.F., Niu,Y., Zhang, X.C., Woody,O.Z., Xiong,Y., Djonović, S., Millet,Y., Bush,J., McConkey, B.J., et al. (2015). Pathogen-secreted proteases activate a novel plant immune pathway. Nature 521: 213–216.
[9]
Deng,X.W., Matsui, M., Wei,N., Wagner,D., Chu,A.M., Feldmann,K.A., and Quail,P.H. (1992). COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a G beta homologous domain. Cell 71: 791–801.
[10]
Dong,J., Ni,W., Yu,R., Deng, X.W., Chen,H., and Wei,N. (2017). Light-dependent degradation of PIF3 by SCF(EBF1/2) promotes a photomorphogenic response in Arabidopsis. Curr. Biol. 27: 2420–2430.
[11]
Good,M.C., Zalatan, J.G., and Lim,W.A. (2011). Scaffold proteins: Hubs for controlling the flow of cellular information. Science 332: 680–686.
[12]
Guo,H., Feng,P., Chi,W., Sun, X., Xu,X., Li,Y., Ren,D., Lu,C., David Rochaix, J., Leister,D., et al. (2016). Plastid-nucleus communication involves calcium-modulated MAPK signalling. Nat. Commun. 7: 12173.
[13]
Guo,J., Wang,S., Valerius,O., Hall, H., Zeng,Q., Li,J.F., Weston, D.J., Ellis,B.E., and Chen,J.G. (2011). Involvement of Arabidopsis RACK1 in protein translation and its regulation by abscisic acid. Plant Physiol. 155: 370–383.
[14]
Heng,Y., Lin,F., Jiang,Y., Ding, M., Yan,T., Lan,H., Zhou,H., Zhao,X., Xu, D., and Deng,X.W. (2019). B-box containing proteins BBX30 and BBX31, acting downstream of HY5, negatively regulate photomorphogenesis in Arabidopsis. Plant Physiol. 180: 497–508.
[15]
Hoecker,U. (2017). The activities of the E3 ubiquitin ligase COP1/SPA, a key repressor in light signaling. Curr. Opin. Plant Biol. 37: 63–69.
[16]
Houbaert,A., Zhang,C., Tiwari,M., Wang, K., de Marcos Serrano,A., Savatin,D.V., Urs,M.J., Zhiponova, M.K., Gudesblat,G.E., Vanhoutte,I., et al. (2018). POLAR-guided signalling complex assembly and localization drive asymmetric cell division. Nature 563: 574–578.
[17]
Huang,X., Ouyang, X., and Deng,X.W. (2014). Beyond repression of photomorphogenesis: role switching of COP/DET/FUS in light signaling. Curr. Opin. Plant Biol. 21: 96–103.
[18]
Hyodo,K., Suzuki, N., and Okuno,T. (2019). Hijacking a host scaffold protein, RACK1, for replication of a plant RNA virus. New Phytol. 221: 935–945.
[19]
Jiao,Y., Lau,O.S., and Deng,X.W. (2007). Light-regulated transcriptional networks in higher plants. Nat. Rev. Genet. 8: 217–230.
[20]
Jing,Y., and Lin, R. (2020). Transcriptional regulatory network of the light signaling pathways. New Phytol. 227: 683–697.
[21]
Job,N., and Datta, S. (2021). PIF3/HY5 module regulates BBX11 to suppress protochlorophyllide levels in dark and promote photomorphogenesis in light. New Phytol. 230: 190–204.
[22]
Lau,O.S., and Deng, X.W. (2012). The photomorphogenic repressors COP1 and DET1: 20 years later. Trends Plant Sci. 17: 584–593.
[23]
Laubinger,S., Fittinghoff, K., and Hoecker,U. (2004). The SPA quartet: A family of WD-repeat proteins with a central role in suppression of photomorphogenesis in Arabidopsis. Plant Cell 16: 2293–2306.
[24]
Lee,J., He,K., Stolc,V., Lee, H., Figueroa,P., Gao,Y., Tongprasit, W., Zhao,H., Lee,I., and Deng, X.W. (2007). Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19: 731–749.
[25]
Legris,M., Ince,Y., and Fankhauser,C. (2019). Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. Nat. Commun. 10: 5219.
[26]
Leivar,P., and Monte, E. (2014). PIFs: Systems integrators in plant development. Plant Cell 26: 56–78.
[27]
Li,C., Qi,L., Zhang,S., Dong, X., Jing,Y., Cheng,J., Feng,Z., Peng,J., Li, H., Zhou,Y., et al. (2022). Mutual upregulation of HY5 and TZP in mediating phytochrome A signaling. Plant Cell 34: 633–654.
[28]
Li,J., Terzaghi, W., Gong,Y., Li,C., Ling,J.J., Fan,Y., Qin, N., Gong,X., Zhu,D., and Deng, X.W. (2020). Modulation of BIN2 kinase activity by HY5 controls hypocotyl elongation in the light. Nat. Commun. 11: 1592.
[29]
Li,J.J., and Xie, D. (2015). RACK1, a versatile hub in cancer. Oncogene 34: 1890–1898.
[30]
Lian,H.L., He,S.B., Zhang,Y.C., Zhu, D.M., Zhang,J.Y., Jia,K.P., Sun,S.X., Li,L., and Yang, H.Q. (2011). Blue-light-dependent interaction of cryptochrome 1 with SPA1 defines a dynamic signaling mechanism. Genes Dev. 25: 1023–1028.
[31]
Lin,F., Jiang,Y., Li,J., Yan, T., Fan,L., Liang,J., Chen,Z.J., Xu,D., and Deng, X.W. (2018). B-BOX DOMAIN PROTEIN28 negatively regulates photomorphogenesis by repressing the activity of transcription factor HY5 and undergoes COP1-mediated degradation. Plant Cell 30: 2006–2019.
[32]
Liu,B., Zuo,Z., Liu,H., Liu, X., and Lin,C. (2011). Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Genes Dev. 25: 1029–1034.
[33]
Liu,Z., Wang,J., Cheng,H., Ke, X., Sun,L., Zhang,Q.C., and Wang, H.W. (2018). Cryo-EM structure of human dicer and its complexes with a pre-miRNA substrate. Cell 173: 1191–1203.
[34]
Locasale,J.W., Shaw,A.S., and Chakraborty,A.K. (2007). Scaffold proteins confer diverse regulatory properties to protein kinase cascades. Proc. Natl. Acad. Sci. U.S.A. 104: 13307–13312.
[35]
Lu,X.D., Zhou,C.M., Xu,P.B., Luo, Q., Lian,H.L., and Yang,H.Q. (2015). Red-light-dependent interaction of phyB with SPA1 promotes COP1-SPA1 dissociation and photomorphogenic development in Arabidopsis. Mol. Plant 8: 467–478.
[36]
Luo,Q., Lian,H.L., He,S.B., Li, L., Jia,K.P., and Yang,H.Q. (2014). COP1 and phyB physically interact with PIL1 to regulate its stability and photomorphogenic development in Arabidopsis. Plant Cell 26: 2441–2456.
[37]
Ma,D., Li,X., Guo,Y., Chu, J., Fang,S., Yan,C., Noel,J.P., and Liu,H. (2016). Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light. Proc. Natl. Acad. Sci. U.S.A. 113: 224–229.
[38]
Mo,W., Zhang,J., Zhang,L., Yang, Z., Yang,L., Yao,N., Xiao,Y., Li,T., Li, Y., Zhang,G., et al. (2022). Arabidopsis cryptochrome 2 forms photobodies with TCP22 under blue light and regulates the circadian clock. Nat. Commun. 13: 2631.
[39]
Ni,M., Tepperman, J.M., and Quail,P.H. (1999). Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light. Nature 400: 781–784.
[40]
Ni,W., Xu,S.L., Chalkley,R.J., Pham,T.N., Guan,S., Maltby,D.A., Burlingame, A.L., Wang,Z.Y., and Quail,P.H. (2013). Multisite light-induced phosphorylation of the transcription factor PIF3 is necessary for both its rapid degradation and concomitant negative feedback modulation of photoreceptor phyB levels in Arabidopsis. Plant Cell 25: 2679–2698.
[41]
Osterlund,M.T., Hardtke, C.S., Wei,N., and Deng,X.W. (2000). Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405: 462–466.
[42]
Paik,I., Kathare, P.K., Kim,J.I., and Huq,E. (2017). Expanding roles of PIFs in signal integration from multiple processes. Mol. Plant 10: 1035–1046.
[43]
Pedmale,U.V., Huang,S.C., Zander,M., Cole, B.J., Hetzel,J., Ljung,K., Reis,P.A.B., Sridevi,P., Nito, K., Nery,J.R., et al. (2016). Cryptochromes interact directly with PIFs to control plant growth in limiting blue light. Cell 164: 233–245.
[44]
Peterson,Y.K., and Luttrell, L.M. (2017). The diverse roles of arrestin scaffolds in G protein-coupled receptor signaling. Pharmacol. Rev. 69: 256–297.
[45]
Pham,V.N., Kathare, P.K., and Huq,E. (2018). Phytochromes and phytochrome interacting factors. Plant Physiol. 176: 1025–1038.
[46]
Podolec,R., and Ulm, R. (2018). Photoreceptor-mediated regulation of the COP1/SPA E3 ubiquitin ligase. Curr. Opin. Plant Biol. 45: 18–25.
[47]
Scott,J.D., and Pawson, T. (2009). Cell signaling in space and time: Where proteins come together and when they're apart. Science 326: 1220–1224.
[48]
Sheerin,D.J., Menon,C., zur Oven-Krockhaus,S., Enderle,B., Zhu,L., Johnen,P., Schleifenbaum, F., Stierhof,Y.D., Huq,E., and Hiltbrunner, A. (2015). Light-activated phytochrome A and B interact with members of the SPA family to promote photomorphogenesis in Arabidopsis by reorganizing the COP1/SPA complex. Plant Cell 27: 189–201.
[49]
Shen,H., Zhu,L., Castillon,A., Majee,M., Downie, B., and Huq,E. (2008). Light-induced phosphorylation and degradation of the negative regulator PHYTOCHROME-INTERACTING FACTOR1 from Arabidopsis depend upon its direct physical interactions with photoactivated phytochromes. Plant Cell 20: 1586–1602.
[50]
Speth,C., Willing, E.M., Rausch,S., Schneeberger,K., and Laubinger, S. (2013). RACK1 scaffold proteins influence miRNA abundance in Arabidopsis. Plant J. 76: 433–445.
[51]
Su,J., Xu,J., and Zhang,S. (2015). RACK1, scaffolding a heterotrimeric G protein and a MAPK cascade. Trends Plant Sci. 20: 405–407.
[52]
Tang,W., Kim,T.W., Oses-Prieto,J.A., Sun,Y., Deng,Z., Zhu,S., Wang, R., Burlingame,A.L., and Wang,Z.Y. (2008). BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321: 557–560.
[53]
Urano,D., Czarnecki, O., Wang,X., Jones,A.M., and Chen, J.G. (2015). Arabidopsis receptor of activated C kinase1 phosphorylation by WITH NO LYSINE8 KINASE. Plant Physiol. 167: 507–516.
[54]
Wang,C., Guo,H., He,X., Zhang, S., Wang,J., Wang,L., Guo,D., and Guo,X. (2020). Scaffold protein GhMORG1 enhances the resistance of cotton to Fusarium oxysporum by facilitating the MKK6-MPK4 cascade. Plant Biotechnol. J. 18: 1421–1433.
[55]
Wang,H., and Wang, H. (2015). Phytochrome signaling: Time to tighten up the loose ends. Mol. Plant 8: 540–551.
[56]
Wang,H., Yang,C., Zhang,C., Wang, N., Lu,D., Wang,J., Zhang,S., Wang,Z.X., Ma, H., and Wang,X. (2011). Dual role of BKI1 and 14-3-3 s in brassinosteroid signaling to link receptor with transcription factors. Dev. Cell 21: 825–834.
[57]
Wang,J., Zhang,X., Greene,G.H., Xu, G., and Dong,X. (2022). PABP/purine-rich motif as an initiation module for cap-independent translation in pattern-triggered immunity. Cell 185: 3186–3200.
[58]
Wang,Z.P., Xing,H.L., Dong,L., Zhang, H.Y., Han,C.Y., Wang,X.C., and Chen, Q.J. (2015). Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol. 16: 144.
[59]
Wolfstetter,G., Pfeifer, K., van Dijk,J.R., Hugosson,F., Lu,X., and Palmer,R.H. (2017). The scaffolding protein Cnk binds to the receptor tyrosine kinase Alk to promote visceral founder cell specification in Drosophila. Sci. Signal. 10: eaan0804.
[60]
Xu,D. (2020). COP1 and BBXs-HY5-mediated light signal transduction in plants. New Phytol. 228: 1748–1753.
[61]
Xu,X., Paik,I., Zhu,L., and Huq, E. (2015). Illuminating progress in phytochrome-mediated light signaling pathways. Trends Plant Sci. 20: 641–650.
[62]
Yang,J., Lin,R., Sullivan,J., Hoecker, U., Liu,B., Xu,L., Deng,X.W., and Wang,H. (2005). Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis. Plant Cell 17: 804–821.
[63]
Yang,Y., Liang,T., Zhang,L., Shao, K., Gu,X., Shang,R., Shi,N., Li,X., Zhang, P., and Liu,H. (2018). UVR8 interacts with WRKY36 to regulate HY5 transcription and hypocotyl elongation in Arabidopsis. Nat. Plants 4: 98–107.
[64]
Yuan,T.T., Xu,H.H., Zhang,Q., Zhang, L.Y., and Lu,Y.T. (2018). The COP1 target SHI-RELATED SEQUENCE5 directly activates photomorphogenesis-promoting genes. Plant Cell 30: 2368–2382.
[65]
Zhou,H., Zhu,W., Wang,X., Bian, Y., Jiang,Y., Li,J., Wang,L., Yin,P., Deng, X.W., and Xu,D. (2022). A missense mutation in WRKY32 converts its function from a positive regulator to a repressor of photomorphogenesis. New Phytol. 235: 111–125.
[66]
Zhu,L., Bu,Q., Xu,X., Paik, I., Huang,X., Hoecker,U., Deng,X.W., and Huq,E. (2015). CUL4 forms an E3 ligase with COP1 and SPA to promote light-induced degradation of PIF1. Nat. Commun. 6: 7245.
[67]
Zhu,W., Zhou,H., Lin,F., Zhao, X., Jiang,Y., Xu,D., and Deng, X.W. (2020). COLD-REGULATED GENE27 integrates signals from light and the circadian clock to promote hypocotyl growth in Arabidopsis. Plant Cell 32: 3155–3169.
[68]
Zuo,Z., Liu,H., Liu,B., Liu, X., and Lin,C. (2011). Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis. Curr. Biol. 21: 841–847.

RIGHTS & PERMISSIONS

2024 2024 Institute of Botany, Chinese Academy of Sciences.
PDF

Accesses

Citations

Detail

Sections
Recommended

/