UVR8-TCP4-LOX2 module regulates UV-B tolerance in Arabidopsis

Cheng Li, Jiancan Du, Huini Xu, Zhenhua Feng, Caspar C. C. Chater, Yuanwen Duan, Yongping Yang, Xudong Sun

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (5) : 897-908. DOI: 10.1111/jipb.13648
Research Article

UVR8-TCP4-LOX2 module regulates UV-B tolerance in Arabidopsis

Author information +
History +

Abstract

The phytohormone jasmonate (JA) coordinates stress and growth responses to increase plant survival in unfavorable environments. Although JA can enhance plant UV-B stress tolerance, the mechanisms underlying the interaction of UV-B and JA in this response remain unknown. In this study, we demonstrate that the UV RESISTANCE LOCUS 8 - TEOSINTE BRANCHED1, Cycloidea and PCF 4 - LIPOXYGENASE2 (UVR8-TCP4-LOX2) module regulates UV-B tolerance dependent on JA signaling pathway in Arabidopsis thaliana. We show that the nucleus-localized UVR8 physically interacts with TCP4 to increase the DNA-binding activity of TCP4 and upregulate the JA biosynthesis gene LOX2. Furthermore, UVR8 activates the expression of LOX2 in a TCP4-dependent manner. Our genetic analysis also provides evidence that TCP4 acts downstream of UVR8 and upstream of LOX2 to mediate plant responses to UV-B stress. Our results illustrate that the UV-B-dependent interaction of UVR8 and TCP4 serves as an important UVR8-TCP4-LOX2 module, which integrates UV-B radiation and JA signaling and represents a new UVR8 signaling mechanism in plants.

Keywords

anthocyanin accumulation / jasmonic acid / TCP4 / UV-B / UVR8

Cite this article

Download citation ▾
Cheng Li, Jiancan Du, Huini Xu, Zhenhua Feng, Caspar C. C. Chater, Yuanwen Duan, Yongping Yang, Xudong Sun. UVR8-TCP4-LOX2 module regulates UV-B tolerance in Arabidopsis. Journal of Integrative Plant Biology, 2024, 66(5): 897‒908 https://doi.org/10.1111/jipb.13648

References

[1]
Bresso,E.G., Chorostecki, U., Rodriguez,R.E., Palatnik,J.F., and Schommer, C. (2018). Spatial control of gene expression by miR319-regulated TCP transcription factors in leaf development. Plant Physiol. 176: 1694–1708.
[2]
Challa,K.R., Aggarwal, P., and Nath,U. (2016). Activation of YUCCA5 by the transcription factor TCP4 integrates developmental and environmental signals to promote hypocotyl elongation in Arabidopsis. Plant Cell 28: 2117–2130.
[3]
Christie,J.M., Arvai,A.S., Baxter,K.J., Heilmann, M., Pratt,A.J., O'Hara,A., Kelly,S.M., Hothorn,M., Smith, B.O., Hitomi,K., et al. (2012). Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science 335: 1492–1496.
[4]
Demkura,P.V., Abdala, G., Baldwin,I.T., and Ballaré,C.L. (2010). Jasmonate-dependent and -independent pathways mediate specific effects of solar ultraviolet B radiation on leaf phenolics and antiherbivore defense. Plant Physiol. 152: 1084–1095.
[5]
Dong,J., Sun,N., Yang,J., Deng, Z., Lan,J., Qin,G., He,H., Deng,X.W., Irish, V.F., Chen,H., et al. (2019). The transcription factors TCP4 and PIF3 antagonistically regulate organ-specific light induction of SAUR genes to modulate cotyledon opening during de-etiolation in Arabidopsis. Plant Cell 31: 1155–1170.
[6]
Fan,D., Ran,L., Hu,J., Ye, X., Xu,D., Li,J., Su,H., Wang,X., Ren, S., and Luo,K. (2020). The miR319a/TCP module and DELLA protein regulate synergistically trichome initiation and improve insect defenses in Populus tomentosa. New Phytol. 227: 867–883.
[7]
Glauser,G., Dubugnon, L., Mousavi,S.A., Rudaz,S., Wolfender, J.L., and Farmer,E.E. (2009). Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis. J. Biol. Chem. 284: 34506–34513.
[8]
Guo,Z., Sun,X., and Xu,H. (2018). Gateway-compatible inducible vector set for the functional analysis of transcription factors in plants. Planta 247: 1261–1266.
[9]
Guo,Z., Xu,H., Lei,Q., Du, J., Li,C., Wang,C., Yang,Y., Yang,Y., and Sun, X. (2020). The Arabidopsis transcription factor LBD15 mediates ABA signaling and tolerance of water-deficit stress by regulating ABI4 expression. Plant J. 104: 510–521.
[10]
Heijde,M., and Ulm, R. (2013). Reversion of the Arabidopsis UV-B photoreceptor UVR8 to the homodimeric ground state. Proc. Natl. Acad. Sci. U. S. A. 110: 1113–1118.
[11]
Hu,Y., Jiang,Y., Han,X., Wang, H., Pan,J., and Yu,D. (2017). Jasmonate regulates leaf senescence and tolerance to cold stress: Crosstalk with other phytohormones. J. Exp. Bot. 68: 1361–1369.
[12]
Huang,X., Ouyang, X., Yang,P., Lau,O.S., Chen,L., Wei,N., and Deng, X.W. (2013). Conversion from CUL4-based COP1-SPA E3 apparatus to UVR8-COP1-SPA complexes underlies a distinct biochemical function of COP1 under UV-B. Proc. Natl. Acad. Sci. U. S. A. 110: 16669–16674.
[13]
Jenkins,G.I. (2014). The UV-B photoreceptor UVR8: From structure to physiology. Plant Cell 26: 21–37.
[14]
Kubota,A., Ito,S., Shim,J.S., Johnson, R.S., Song,Y.H., Breton,G., Goralogia, G.S., Kwon,M.S., Laboy Cintron,D., Koyama, T., et al. (2017). TCP4-dependent induction of CONSTANS transcription requires GIGANTEA in photoperiodic flowering in Arabidopsis. PLoS Genet. 13: e1006856.
[15]
Lan,J., Zhang,J., Yuan,R., Yu, H., An,F., Sun,L., Chen,H., Zhou,Y., Qian, W., He,H., et al. (2021). TCP transcription factors suppress cotyledon trichomes by impeding a cell differentiation-regulating complex. Plant Physiol. 186: 434–451.
[16]
Li,Z., Li,B., Shen,W.H., Huang, H., and Dong,A. (2012). TCP transcription factors interact with AS2 in the repression of class-I KNOX genes in Arabidopsis thaliana. Plant J. 71: 99–107.
[17]
Liang,T., Mei,S., Shi,C., Yang, Y., Peng,Y., Ma,L., Wang,F., Li,X., Huang, X., Yin,Y., et al. (2018). UVR8 Interacts with BES1 and BIM1 to regulate transcription and photomorphogenesis in Arabidopsis. Dev. Cell 44: 512–523 e515.
[18]
Liang,T., Shi,C., Peng,Y., Tan, H., Xin,P., Yang,Y., Wang,F., Li,X., Chu, J., Huang,J., et al. (2020). Brassinosteroid-activated BRI1-EMS-SUPPRESSOR 1 inhibits flavonoid biosynthesis and coordinates growth and UV-B stress responses in plants. Plant Cell 32: 3224–3239.
[19]
Liang,T., Yang,Y., and Liu,H. (2019). Signal transduction mediated by the plant UV-B photoreceptor UVR8. New Phytol. 221: 1247–1252.
[20]
Liu,J., Cheng,X., Liu,P., Li, D., Chen,T., Gu,X., and Sun, J. (2017). MicroRNA319-regulated TCPs interact with FBHs and PFT1 to activate CO transcription and control flowering time in Arabidopsis. PLoS Genet. 13: e1006833.
[21]
Liu,X., Chi,H., Yue,M., Zhang, X., Li,W., and Jia,E. (2012). The regulation of exogenous jasmonic acid on UV-B stress tolerance in wheat. J. Plant Growth Regul. 31: 436–447.
[22]
Liu,Y., Li,D., Yan,J., Wang, K., Luo,H., and Zhang,W. (2019). MiR319 mediated salt tolerance by ethylene. Plant Biotechnol. J. 17: 2370–2383.
[23]
Mackerness,S.-A.H., Surplus, S.L., Blake,P., John,C.F., Buchanan-Wollaston, V., Jordan,B.R., and Thomas,B. (1999). Ultraviolet-B-induced stress and changes in gene expression in Arabidopsis thaliana: Role of signalling pathways controlled by jasmonic acid, ethylene and reactive oxygen species. Plant, Cell Environ. 22: 1413–1423.
[24]
Nag,A., King,S., and Jack,T. (2009). miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 106: 22534–22539.
[25]
Ori,N., Cohen,A.R., Etzioni,A., Brand, A., Yanai,O., Shleizer,S., Menda,N., Amsellem,Z., Efroni, I., Pekker,I., et al. (2007). Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat. Genet. 39: 787–791.
[26]
Palatnik,J.F., Allen,E., Wu,X., Schommer, C., Schwab,R., Carrington,J.C., and Weigel, D. (2003). Control of leaf morphogenesis by microRNAs. Nature 425: 257–263.
[27]
Qi,J., Li,J., Han,X., Li, R., Wu,J., Yu,H., Hu,L., Xiao,Y., Lu, J., and Lou,Y. (2016). Jasmonic acid carboxyl methyltransferase regulates development and herbivory-induced defense response in rice. J. Integr. Plant Biol. 58: 564–576.
[28]
Qi,T., Song,S., Ren,Q., Wu, D., Huang,H., Chen,Y., Fan,M., Peng,W., Ren, C., and Xie,D. (2011). The jasmonate-ZIM-domain proteins interact with the WD-repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell 23: 1795–1814.
[29]
Qian,C., Chen,Z., Liu,Q., Mao, W., Chen,Y., Tian,W., Liu,Y., Han,J., Ouyang, X., and Huang,X. (2020). Coordinated transcriptional regulation by the UV-B photoreceptor and multiple transcription factors for plant UV-B responses. Mol. Plant 13: 777–792.
[30]
Quan,J., Song,S., Abdulrashid,K., Chai,Y., Yue,M., and Liu,X. (2018). Separate and combined response to UV-B radiation and jasmonic acid on photosynthesis and growth characteristics of Scutellaria baicalensis. Int. J. Mol. Sci. 19: 1194.
[31]
Ren,H., Han,J., Yang,P., Mao, W., Liu,X., Qiu,L., Qian,C., Liu,Y., Chen, Z., Ouyang,X., et al. (2019). Two E3 ligases antagonistically regulate the UV-B response in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 116: 4722–4731.
[32]
Rizzini,L., Favory, J.J., Cloix,C., Faggionato,D., O'Hara, A., Kaiserli,E., Baumeister,R., Schafer, E., Nagy,F., Jenkins,G.I., et al. (2011). Perception of UV-B by the Arabidopsis UVR8 protein. Science 332: 103–106.
[33]
Saini,K., Dwivedi, A., and Ranjan,A. (2022). High temperature restricts cell division and leaf size by coordination of PIF4 and TCP4 transcription factors. Plant Physiol. 190: 2380–2397.
[34]
Sarvepalli,K., and Nath, U. (2011). Hyper-activation of the TCP4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation. Plant J. 67: 595–607.
[35]
Schommer,C., Debernardi, J.M., Bresso,E.G., Rodriguez,R.E., and Palatnik, J.F. (2014). Repression of cell proliferation by miR319-regulated TCP4. Mol. Plant 7: 1533–1544.
[36]
Schommer,C., Palatnik, J.F., Aggarwal,P., Chetelat,A., Cubas,P., Farmer,E.E., Nath, U., and Weigel,D. (2008). Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol. 6: e230.
[37]
Schreiner,M., Mewis,I., Neugart,S., Zrenner, R., Glaab,J., Wiesner,M., and Jansen, M.A.K. (2016). UV-B elicitation of secondary plant metabolites. In III-Nitride Ultraviolet Emitters: Technology and Applications, M.Kneissl, J. Rass, eds, (Cham: Springer International Publishing), pp. 387–414.
[38]
Seltmann,M.A., Stingl, N.E., Lautenschlaeger,J.K., Krischke,M., Mueller, M.J., and Berger,S. (2010). Differential impact of lipoxygenase 2 and jasmonates on natural and stress-induced senescence in Arabidopsis. Plant Physiol. 152: 1940–1950.
[39]
Shamala,L.F., Zhou,H.C., Han,Z.X., and Wei, S. (2020). UV-B induces distinct transcriptional re-programing in UVR8-signal transduction, flavonoid, and terpenoids pathways in Camellia sinensis. Front. Plant Sci. 11: 234.
[40]
Soriano,G., Cloix,C., Heilmann,M., Nunez-Olivera, E., Martinez-Abaigar,J., and Jenkins,G.I. (2018). Evolutionary conservation of structure and function of the UVR8 photoreceptor from the liverwort Marchantia polymorpha and the moss Physcomitrella patens. New Phytol. 217: 151–162.
[41]
Sun,X., Wang,C., Xiang,N., Li, X., Yang,S., Du,J., Yang,Y., and Yang,Y. (2017). Activation of secondary cell wall biosynthesis by miR319-targeted TCP4 transcription factor. Plant Biotechnol. J. 15: 1284–1294.
[42]
Teng,S., Keurentjes, J., Bentsink,L., Koornneef,M., and Smeekens, S. (2005). Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol. 139: 1840–1852.
[43]
Thiebaut,F., Rojas,C.A., Almeida,K.L., Grativol,C., Domiciano, G.C., Lamb,C.R., Engler Jde,A., Hemerly, A.S., and Ferreira,P.C. (2012). Regulation of miR319 during cold stress in sugarcane. Plant Cell Environ. 35: 502–512.
[44]
Tissot,N., and Ulm, R. (2020). Cryptochrome-mediated blue-light signalling modulates UVR8 photoreceptor activity and contributes to UV-B tolerance in Arabidopsis. Nat. Commun. 11: 1323.
[45]
Vadde,B.V.L., Challa, K.R., and Nath,U. (2018). The TCP4 transcription factor regulates trichome cell differentiation by directly activating GLABROUS INFLORESCENCE STEMS in Arabidopsis thaliana. Plant J. 93: 259–269.
[46]
Yang,C., Li,D., Mao,D., Liu, X., Ji,C., Li,X., Zhao,X., Cheng,Z., Chen, C., and Zhu,L. (2013). Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant Cell Environ. 36: 2207–2218.
[47]
Yang,Y., Zhang,L., Chen,P., Liang, T., Li,X., and Liu,H. (2020). UV-B photoreceptor UVR8 interacts with MYB73/MYB77 to regulate auxin responses and lateral root development. EMBO J. 39: e101928.
[48]
Yang,Y., Liang,T., Zhang,L., Shao, K., Gu,X., Shang,R., Shi,N., Li,X., Zhang, P., and Liu,H. (2018). UVR8 interacts with WRKY36 to regulate HY5 transcription and hypocotyl elongation in Arabidopsis. Nat. Plants 4: 98–107.
[49]
Yin,R., Skvortsova, M.Y., Loubery,S., and Ulm,R. (2016). COP1 is required for UV-B-induced nuclear accumulation of the UVR8 photoreceptor. Proc. Natl. Acad. Sci. U. S. A. 113: E4415–E4422.
[50]
Zhai,Q., Yan,L., Tan,D., Chen, R., Sun,J., Gao,L., Dong,M.Q., Wang,Y., and Li, C. (2013). Phosphorylation-coupled proteolysis of the transcription factor MYC2 is important for jasmonate-signaled plant immunity. PLoS Genet. 9: e1003422.
[51]
Zheng,X., Lan,J., Yu,H., Zhang, J., Zhang,Y., Qin,Y., Su,X.D., and Qin,G. (2022). Arabidopsis transcription factor TCP4 represses chlorophyll biosynthesis to prevent petal greening. Plant Commun. 3: 100309.
[52]
Zhou,M., Li,D., Li,Z., Hu, Q., Yang,C., Zhu,L., and Luo, H. (2013). Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol. 161: 1375–1391.
[53]
Zhou,Y., Xun,Q., Zhang,D., Lv, M., Ou,Y., and Li,J. (2019). TCP transcription factors associate with PHYTOCHROME INTERACTING FACTOR 4 and CRYPTOCHROME 1 to regulate thermomorphogenesis in Arabidopsis thaliana. iScience 15: 600–610.

RIGHTS & PERMISSIONS

2024 2024 Institute of Botany, Chinese Academy of Sciences.
PDF

Accesses

Citations

Detail

Sections
Recommended

/