UVR8-TCP4-LOX2 module regulates UV-B tolerance in Arabidopsis
Cheng Li, Jiancan Du, Huini Xu, Zhenhua Feng, Caspar C. C. Chater, Yuanwen Duan, Yongping Yang, Xudong Sun
UVR8-TCP4-LOX2 module regulates UV-B tolerance in Arabidopsis
The phytohormone jasmonate (JA) coordinates stress and growth responses to increase plant survival in unfavorable environments. Although JA can enhance plant UV-B stress tolerance, the mechanisms underlying the interaction of UV-B and JA in this response remain unknown. In this study, we demonstrate that the UV RESISTANCE LOCUS 8 - TEOSINTE BRANCHED1, Cycloidea and PCF 4 - LIPOXYGENASE2 (UVR8-TCP4-LOX2) module regulates UV-B tolerance dependent on JA signaling pathway in Arabidopsis thaliana. We show that the nucleus-localized UVR8 physically interacts with TCP4 to increase the DNA-binding activity of TCP4 and upregulate the JA biosynthesis gene LOX2. Furthermore, UVR8 activates the expression of LOX2 in a TCP4-dependent manner. Our genetic analysis also provides evidence that TCP4 acts downstream of UVR8 and upstream of LOX2 to mediate plant responses to UV-B stress. Our results illustrate that the UV-B-dependent interaction of UVR8 and TCP4 serves as an important UVR8-TCP4-LOX2 module, which integrates UV-B radiation and JA signaling and represents a new UVR8 signaling mechanism in plants.
anthocyanin accumulation / jasmonic acid / TCP4 / UV-B / UVR8
[1] |
Bresso,E.G., Chorostecki, U., Rodriguez,R.E., Palatnik,J.F., and Schommer, C. (2018). Spatial control of gene expression by miR319-regulated TCP transcription factors in leaf development. Plant Physiol. 176: 1694–1708.
|
[2] |
Challa,K.R., Aggarwal, P., and Nath,U. (2016). Activation of YUCCA5 by the transcription factor TCP4 integrates developmental and environmental signals to promote hypocotyl elongation in Arabidopsis. Plant Cell 28: 2117–2130.
|
[3] |
Christie,J.M., Arvai,A.S., Baxter,K.J., Heilmann, M., Pratt,A.J., O'Hara,A., Kelly,S.M., Hothorn,M., Smith, B.O., Hitomi,K., et al. (2012). Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science 335: 1492–1496.
|
[4] |
Demkura,P.V., Abdala, G., Baldwin,I.T., and Ballaré,C.L. (2010). Jasmonate-dependent and -independent pathways mediate specific effects of solar ultraviolet B radiation on leaf phenolics and antiherbivore defense. Plant Physiol. 152: 1084–1095.
|
[5] |
Dong,J., Sun,N., Yang,J., Deng, Z., Lan,J., Qin,G., He,H., Deng,X.W., Irish, V.F., Chen,H., et al. (2019). The transcription factors TCP4 and PIF3 antagonistically regulate organ-specific light induction of SAUR genes to modulate cotyledon opening during de-etiolation in Arabidopsis. Plant Cell 31: 1155–1170.
|
[6] |
Fan,D., Ran,L., Hu,J., Ye, X., Xu,D., Li,J., Su,H., Wang,X., Ren, S., and Luo,K. (2020). The miR319a/TCP module and DELLA protein regulate synergistically trichome initiation and improve insect defenses in Populus tomentosa. New Phytol. 227: 867–883.
|
[7] |
Glauser,G., Dubugnon, L., Mousavi,S.A., Rudaz,S., Wolfender, J.L., and Farmer,E.E. (2009). Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis. J. Biol. Chem. 284: 34506–34513.
|
[8] |
Guo,Z., Sun,X., and Xu,H. (2018). Gateway-compatible inducible vector set for the functional analysis of transcription factors in plants. Planta 247: 1261–1266.
|
[9] |
Guo,Z., Xu,H., Lei,Q., Du, J., Li,C., Wang,C., Yang,Y., Yang,Y., and Sun, X. (2020). The Arabidopsis transcription factor LBD15 mediates ABA signaling and tolerance of water-deficit stress by regulating ABI4 expression. Plant J. 104: 510–521.
|
[10] |
Heijde,M., and Ulm, R. (2013). Reversion of the Arabidopsis UV-B photoreceptor UVR8 to the homodimeric ground state. Proc. Natl. Acad. Sci. U. S. A. 110: 1113–1118.
|
[11] |
Hu,Y., Jiang,Y., Han,X., Wang, H., Pan,J., and Yu,D. (2017). Jasmonate regulates leaf senescence and tolerance to cold stress: Crosstalk with other phytohormones. J. Exp. Bot. 68: 1361–1369.
|
[12] |
Huang,X., Ouyang, X., Yang,P., Lau,O.S., Chen,L., Wei,N., and Deng, X.W. (2013). Conversion from CUL4-based COP1-SPA E3 apparatus to UVR8-COP1-SPA complexes underlies a distinct biochemical function of COP1 under UV-B. Proc. Natl. Acad. Sci. U. S. A. 110: 16669–16674.
|
[13] |
Jenkins,G.I. (2014). The UV-B photoreceptor UVR8: From structure to physiology. Plant Cell 26: 21–37.
|
[14] |
Kubota,A., Ito,S., Shim,J.S., Johnson, R.S., Song,Y.H., Breton,G., Goralogia, G.S., Kwon,M.S., Laboy Cintron,D., Koyama, T., et al. (2017). TCP4-dependent induction of CONSTANS transcription requires GIGANTEA in photoperiodic flowering in Arabidopsis. PLoS Genet. 13: e1006856.
|
[15] |
Lan,J., Zhang,J., Yuan,R., Yu, H., An,F., Sun,L., Chen,H., Zhou,Y., Qian, W., He,H., et al. (2021). TCP transcription factors suppress cotyledon trichomes by impeding a cell differentiation-regulating complex. Plant Physiol. 186: 434–451.
|
[16] |
Li,Z., Li,B., Shen,W.H., Huang, H., and Dong,A. (2012). TCP transcription factors interact with AS2 in the repression of class-I KNOX genes in Arabidopsis thaliana. Plant J. 71: 99–107.
|
[17] |
Liang,T., Mei,S., Shi,C., Yang, Y., Peng,Y., Ma,L., Wang,F., Li,X., Huang, X., Yin,Y., et al. (2018). UVR8 Interacts with BES1 and BIM1 to regulate transcription and photomorphogenesis in Arabidopsis. Dev. Cell 44: 512–523 e515.
|
[18] |
Liang,T., Shi,C., Peng,Y., Tan, H., Xin,P., Yang,Y., Wang,F., Li,X., Chu, J., Huang,J., et al. (2020). Brassinosteroid-activated BRI1-EMS-SUPPRESSOR 1 inhibits flavonoid biosynthesis and coordinates growth and UV-B stress responses in plants. Plant Cell 32: 3224–3239.
|
[19] |
Liang,T., Yang,Y., and Liu,H. (2019). Signal transduction mediated by the plant UV-B photoreceptor UVR8. New Phytol. 221: 1247–1252.
|
[20] |
Liu,J., Cheng,X., Liu,P., Li, D., Chen,T., Gu,X., and Sun, J. (2017). MicroRNA319-regulated TCPs interact with FBHs and PFT1 to activate CO transcription and control flowering time in Arabidopsis. PLoS Genet. 13: e1006833.
|
[21] |
Liu,X., Chi,H., Yue,M., Zhang, X., Li,W., and Jia,E. (2012). The regulation of exogenous jasmonic acid on UV-B stress tolerance in wheat. J. Plant Growth Regul. 31: 436–447.
|
[22] |
Liu,Y., Li,D., Yan,J., Wang, K., Luo,H., and Zhang,W. (2019). MiR319 mediated salt tolerance by ethylene. Plant Biotechnol. J. 17: 2370–2383.
|
[23] |
Mackerness,S.-A.H., Surplus, S.L., Blake,P., John,C.F., Buchanan-Wollaston, V., Jordan,B.R., and Thomas,B. (1999). Ultraviolet-B-induced stress and changes in gene expression in Arabidopsis thaliana: Role of signalling pathways controlled by jasmonic acid, ethylene and reactive oxygen species. Plant, Cell Environ. 22: 1413–1423.
|
[24] |
Nag,A., King,S., and Jack,T. (2009). miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 106: 22534–22539.
|
[25] |
Ori,N., Cohen,A.R., Etzioni,A., Brand, A., Yanai,O., Shleizer,S., Menda,N., Amsellem,Z., Efroni, I., Pekker,I., et al. (2007). Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat. Genet. 39: 787–791.
|
[26] |
Palatnik,J.F., Allen,E., Wu,X., Schommer, C., Schwab,R., Carrington,J.C., and Weigel, D. (2003). Control of leaf morphogenesis by microRNAs. Nature 425: 257–263.
|
[27] |
Qi,J., Li,J., Han,X., Li, R., Wu,J., Yu,H., Hu,L., Xiao,Y., Lu, J., and Lou,Y. (2016). Jasmonic acid carboxyl methyltransferase regulates development and herbivory-induced defense response in rice. J. Integr. Plant Biol. 58: 564–576.
|
[28] |
Qi,T., Song,S., Ren,Q., Wu, D., Huang,H., Chen,Y., Fan,M., Peng,W., Ren, C., and Xie,D. (2011). The jasmonate-ZIM-domain proteins interact with the WD-repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell 23: 1795–1814.
|
[29] |
Qian,C., Chen,Z., Liu,Q., Mao, W., Chen,Y., Tian,W., Liu,Y., Han,J., Ouyang, X., and Huang,X. (2020). Coordinated transcriptional regulation by the UV-B photoreceptor and multiple transcription factors for plant UV-B responses. Mol. Plant 13: 777–792.
|
[30] |
Quan,J., Song,S., Abdulrashid,K., Chai,Y., Yue,M., and Liu,X. (2018). Separate and combined response to UV-B radiation and jasmonic acid on photosynthesis and growth characteristics of Scutellaria baicalensis. Int. J. Mol. Sci. 19: 1194.
|
[31] |
Ren,H., Han,J., Yang,P., Mao, W., Liu,X., Qiu,L., Qian,C., Liu,Y., Chen, Z., Ouyang,X., et al. (2019). Two E3 ligases antagonistically regulate the UV-B response in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 116: 4722–4731.
|
[32] |
Rizzini,L., Favory, J.J., Cloix,C., Faggionato,D., O'Hara, A., Kaiserli,E., Baumeister,R., Schafer, E., Nagy,F., Jenkins,G.I., et al. (2011). Perception of UV-B by the Arabidopsis UVR8 protein. Science 332: 103–106.
|
[33] |
Saini,K., Dwivedi, A., and Ranjan,A. (2022). High temperature restricts cell division and leaf size by coordination of PIF4 and TCP4 transcription factors. Plant Physiol. 190: 2380–2397.
|
[34] |
Sarvepalli,K., and Nath, U. (2011). Hyper-activation of the TCP4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation. Plant J. 67: 595–607.
|
[35] |
Schommer,C., Debernardi, J.M., Bresso,E.G., Rodriguez,R.E., and Palatnik, J.F. (2014). Repression of cell proliferation by miR319-regulated TCP4. Mol. Plant 7: 1533–1544.
|
[36] |
Schommer,C., Palatnik, J.F., Aggarwal,P., Chetelat,A., Cubas,P., Farmer,E.E., Nath, U., and Weigel,D. (2008). Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol. 6: e230.
|
[37] |
Schreiner,M., Mewis,I., Neugart,S., Zrenner, R., Glaab,J., Wiesner,M., and Jansen, M.A.K. (2016). UV-B elicitation of secondary plant metabolites. In III-Nitride Ultraviolet Emitters: Technology and Applications, M.Kneissl, J. Rass, eds, (Cham: Springer International Publishing), pp. 387–414.
|
[38] |
Seltmann,M.A., Stingl, N.E., Lautenschlaeger,J.K., Krischke,M., Mueller, M.J., and Berger,S. (2010). Differential impact of lipoxygenase 2 and jasmonates on natural and stress-induced senescence in Arabidopsis. Plant Physiol. 152: 1940–1950.
|
[39] |
Shamala,L.F., Zhou,H.C., Han,Z.X., and Wei, S. (2020). UV-B induces distinct transcriptional re-programing in UVR8-signal transduction, flavonoid, and terpenoids pathways in Camellia sinensis. Front. Plant Sci. 11: 234.
|
[40] |
Soriano,G., Cloix,C., Heilmann,M., Nunez-Olivera, E., Martinez-Abaigar,J., and Jenkins,G.I. (2018). Evolutionary conservation of structure and function of the UVR8 photoreceptor from the liverwort Marchantia polymorpha and the moss Physcomitrella patens. New Phytol. 217: 151–162.
|
[41] |
Sun,X., Wang,C., Xiang,N., Li, X., Yang,S., Du,J., Yang,Y., and Yang,Y. (2017). Activation of secondary cell wall biosynthesis by miR319-targeted TCP4 transcription factor. Plant Biotechnol. J. 15: 1284–1294.
|
[42] |
Teng,S., Keurentjes, J., Bentsink,L., Koornneef,M., and Smeekens, S. (2005). Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol. 139: 1840–1852.
|
[43] |
Thiebaut,F., Rojas,C.A., Almeida,K.L., Grativol,C., Domiciano, G.C., Lamb,C.R., Engler Jde,A., Hemerly, A.S., and Ferreira,P.C. (2012). Regulation of miR319 during cold stress in sugarcane. Plant Cell Environ. 35: 502–512.
|
[44] |
Tissot,N., and Ulm, R. (2020). Cryptochrome-mediated blue-light signalling modulates UVR8 photoreceptor activity and contributes to UV-B tolerance in Arabidopsis. Nat. Commun. 11: 1323.
|
[45] |
Vadde,B.V.L., Challa, K.R., and Nath,U. (2018). The TCP4 transcription factor regulates trichome cell differentiation by directly activating GLABROUS INFLORESCENCE STEMS in Arabidopsis thaliana. Plant J. 93: 259–269.
|
[46] |
Yang,C., Li,D., Mao,D., Liu, X., Ji,C., Li,X., Zhao,X., Cheng,Z., Chen, C., and Zhu,L. (2013). Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant Cell Environ. 36: 2207–2218.
|
[47] |
Yang,Y., Zhang,L., Chen,P., Liang, T., Li,X., and Liu,H. (2020). UV-B photoreceptor UVR8 interacts with MYB73/MYB77 to regulate auxin responses and lateral root development. EMBO J. 39: e101928.
|
[48] |
Yang,Y., Liang,T., Zhang,L., Shao, K., Gu,X., Shang,R., Shi,N., Li,X., Zhang, P., and Liu,H. (2018). UVR8 interacts with WRKY36 to regulate HY5 transcription and hypocotyl elongation in Arabidopsis. Nat. Plants 4: 98–107.
|
[49] |
Yin,R., Skvortsova, M.Y., Loubery,S., and Ulm,R. (2016). COP1 is required for UV-B-induced nuclear accumulation of the UVR8 photoreceptor. Proc. Natl. Acad. Sci. U. S. A. 113: E4415–E4422.
|
[50] |
Zhai,Q., Yan,L., Tan,D., Chen, R., Sun,J., Gao,L., Dong,M.Q., Wang,Y., and Li, C. (2013). Phosphorylation-coupled proteolysis of the transcription factor MYC2 is important for jasmonate-signaled plant immunity. PLoS Genet. 9: e1003422.
|
[51] |
Zheng,X., Lan,J., Yu,H., Zhang, J., Zhang,Y., Qin,Y., Su,X.D., and Qin,G. (2022). Arabidopsis transcription factor TCP4 represses chlorophyll biosynthesis to prevent petal greening. Plant Commun. 3: 100309.
|
[52] |
Zhou,M., Li,D., Li,Z., Hu, Q., Yang,C., Zhu,L., and Luo, H. (2013). Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol. 161: 1375–1391.
|
[53] |
Zhou,Y., Xun,Q., Zhang,D., Lv, M., Ou,Y., and Li,J. (2019). TCP transcription factors associate with PHYTOCHROME INTERACTING FACTOR 4 and CRYPTOCHROME 1 to regulate thermomorphogenesis in Arabidopsis thaliana. iScience 15: 600–610.
|
/
〈 | 〉 |