
Deep learning technology in vascular image segmentation and disease diagnosis
Chengyang Du, Jie Zhuang, Xinglu Huang
Journal of Intelligent Medicine ›› 2024, Vol. 1 ›› Issue (1) : 6-41.
Deep learning technology in vascular image segmentation and disease diagnosis
Blood vessel segmentation is a crucial aspect of medical image processing, aiding medical professionals in more accurate disease analysis and diagnosis. Manual blood vessel segmentation methods are time-consuming and cumbersome, making the development of automatic segmentation methods essential. The rapid advancements in deep learning technology have introduced new tools and methods for vascular image segmentation. In this review, we provide a comprehensive overview of deep learning-based blood vessel segmentation methods across various fields, including retinal vessel segmentation, cerebrovascular segmentation, and pulmonary vessel segmentation. Several prevalent diseases, such as retinal vascular diseases, cerebrovascular diseases, pulmonary vascular diseases, and tumors, have posed significant health challenges globally. This review also discusses the application of deep learning technology in disease diagnosis within these contexts. Finally, considering the current research landscape, we discuss existing challenges and potential future developments in blood vessel segmentation. We aim to assist researchers in gaining a comprehensive understanding and designing effective blood vessel segmentation models, ultimately offering opportunities for early disease diagnosis and treatment.
cerebrovascular segmentation / deep learning / disease diagnosis / pulmonary vessel segmentation / retinal vessel segmentation
[1] |
Li X, Carmeliet P. Targeting angiogenic metabolism in disease. Science. 2018; 359(6382): 1335-1336.
CrossRef
Google scholar
|
[2] |
Wu J, Qin C, Ma J, et al. An immunomodulatory bioink with hollow manganese silicate nanospheres for angiogenesis. Appl Mater Today. 2021; 23: 101015.
CrossRef
Google scholar
|
[3] |
Wang C, Oda M, Hayashi Y, et al. Tensor-cut: a tensor-based graph-cut blood vessel segmentation method and its application to renal artery segmentation. Med Image Anal. 2020; 60: 101623.
CrossRef
Google scholar
|
[4] |
Guefrachi S, Echtioui A, Hamam H. Automated diabetic retinopathy screening using deep learning. Multimed Tool Appl. 2024; 83(24): 65249-65266.
CrossRef
Google scholar
|
[5] |
Mateen M, Wen J, Hassan M, Nasrullah N, Sun S, Hayat S. Automatic detection of diabetic retinopathy: a review on datasets, methods and evaluation metrics. IEEE Access. 2020; 8: 48784-48811.
CrossRef
Google scholar
|
[6] |
Abdulsahib AA, Mahmoud MA, Aris H, Gunasekaran SS, Mohammed MA. An automated image segmentation and useful feature extraction algorithm for retinal blood vessels in fundus images. Electronics. 2022; 11(9): 1295.
CrossRef
Google scholar
|
[7] |
Ma H, Zou Y, Liu PX. MHSU-Net: a more versatile neural network for medical image segmentation. Comput Methods Progr Biomed. 2021; 208: 106230.
CrossRef
Google scholar
|
[8] |
Chen C, Chuah JH, Ali R, Wang Y. Retinal vessel segmentation using deep learning: a review. IEEE Access. 2021; 9: 111985-112004.
CrossRef
Google scholar
|
[9] |
Staal J, Abramoff MD, Niemeijer M, Viergever MA, van Ginneken B. Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imag. 2004; 23(4): 501-509.
CrossRef
Google scholar
|
[10] |
Soares JVB, Leandro JJG, Cesar RM, Jelinek HF, Cree MJ. Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans Med Imag. 2006; 25(9): 1214-1222.
CrossRef
Google scholar
|
[11] |
Fraz MM, Remagnino P, Hoppe A, et al. An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans Biomed Eng. 2012; 59(9): 2538-2548.
CrossRef
Google scholar
|
[12] |
Odstrcilik J, Kolar R, Budai A, et al. Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database. IET Image Process. 2013; 7(4): 373-383.
CrossRef
Google scholar
|
[13] |
Zhang J, Dashtbozorg B, Bekkers E, Pluim JPW, Duits R, ter Romeny BMH. Robust retinal vessel segmentation via locally adaptive derivative frames in orientation scores. IEEE Trans Med Imag. 2016; 35(12): 2631-2644.
CrossRef
Google scholar
|
[14] |
Abbasi-Sureshjani S, Smit-Ockeloen I. Zhang J, Romeny BTH. Biologically-inspired supervised vasculature segmentation in SLO retinal fundus images. In: Kamel M, Campilho A, eds. Image Analysis and Recognition (ICIAR 2015). Association of Image & Machine Intelligence; 2015: 325-334.
CrossRef
Google scholar
|
[15] |
Decencière E, Zhang X, Cazuguel G, et al. Feedback on a publicly distributed image database: the MESSIDOR database. Image Anal Stereol. 2014; 33(3): 231.
CrossRef
Google scholar
|
[16] |
Farnell DJJ, Hatfield FN, Knox P, et al. Enhancement of blood vessels in digital fundus photographs via the application of multiscale line operators. J Franklin Inst. 2008; 345(7): 748-765.
CrossRef
Google scholar
|
[17] |
Estrada R, Allingham MJ, Mettu PS, Cousins SW, Tomasi C, Farsiu S. Retinal artery-vein classification via topology estimation. IEEE Trans Med Imag. 2015; 34(12): 2518-2534.
CrossRef
Google scholar
|
[18] |
Chalakkal RJ, Abdulla WH, Sinumol S. Comparative analysis of University of Auckland diabetic retinopathy database. In: Proceedings of the 9th International Conference on Signal Processing Systems. ACM; 2017: 235-239.
CrossRef
Google scholar
|
[19] |
Pachade S, Porwal P, Thulkar D, et al. Retinal fundus multi-disease image dataset (RFMiD): a dataset for multi-disease detection research. Data. 2021; 6(2): 14.
CrossRef
Google scholar
|
[20] |
Ahmed SU, Mocco J, Zhang X, et al. MRA versus DSA for the follow-up imaging of intracranial aneurysms treated using endovascular techniques: a meta-analysis. J Neurointerventional Surg. 2019; 11(10): 1009-1014.
CrossRef
Google scholar
|
[21] |
Chung H, Cha E, Sunwoo L, Ye JC. Two-stage deep learning for accelerated 3D time-of-flight MRA without matched training data. Med Image Anal. 2021; 71: 102047.
CrossRef
Google scholar
|
[22] |
Mookiah MRK, Hogg S, MacGillivray TJ, et al. A review of machine learning methods for retinal blood vessel segmentation and artery/vein classification. Med Image Anal. 2021; 68: 101905.
CrossRef
Google scholar
|
[23] |
Zhu K, Chen Y, Ghamisi P, Jia X, Benediktsson JA. Deep convolutional capsule network for hyperspectral image spectral and spectral-spatial classification. Rem Sens. 2019; 11(3): 223.
CrossRef
Google scholar
|
[24] |
Khalaf AF, Yassine IA, Fahmy AS. Convolutional neural networks for deep feature learning in retinal vessel segmentation. In: 2016 IEEE International Conference on Image Processing (ICIP). 2016: 385-388.
CrossRef
Google scholar
|
[25] |
Liskowski P, Krawiec K. Segmenting retinal blood vessels with deep neural networks. IEEE Trans Med Imag. 2016; 35(11): 2369-2380.
CrossRef
Google scholar
|
[26] |
Fan Z, Mo J-J. Automated blood vessel segmentation based on de-noising auto-encoder and neural network. In: 2016 International Conference on Machine Learning and Cybernetics (ICMLC). 2016: 849-856.
CrossRef
Google scholar
|
[27] |
Vengalil SK, Sinha N, Kruthiventi SSS, Babu RV. Customizing CNNs for blood vessel segmentation from fundus images. In: 2016 International Conference on Signal Processing and Communications (SPCOM). 2016: 1-4.
CrossRef
Google scholar
|
[28] |
Tan JH, Acharya UR, Bhandary SV, Chua KC, Sivaprasad S. Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network. J Comput Sci. 2017; 20: 70-79.
CrossRef
Google scholar
|
[29] |
Guo Y, Budak Ü, Şengür A. A novel retinal vessel detection approach based on multiple deep convolution neural networks. Comput Methods Progr Biomed. 2018; 167: 43-48.
CrossRef
Google scholar
|
[30] |
Hu K, Zhang Z, Niu X, et al. Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function. Neurocomputing. 2018; 309: 179-191.
CrossRef
Google scholar
|
[31] |
Tian C, Fang T, Fan Y, Wu W. Multi-path convolutional neural network in fundus segmentation of blood vessels. Biocybern Biomed Eng. 2020; 40(2): 583-595.
CrossRef
Google scholar
|
[32] |
Chala M, Nsiri B, yousfi Alaoui MHE, Soulaymani A, Mokhtari A, Benaji B. An automatic retinal vessel segmentation approach based on convolutional neural networks. Expert Syst Appl. 2021; 184: 115459.
CrossRef
Google scholar
|
[33] |
Kamnitsas K, Ledig C, Newcombe VFJ, et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal. 2017; 36: 61-78.
CrossRef
Google scholar
|
[34] |
Phellan R, Peixinho A, Falcão A, Forkert ND. Vascular segmentation in TOF MRA images of the brain using a deep convolutional neural network. In: Cardoso MJ, Arbel T, Lee S-L. et al., eds. Intravascular Imaging and Computer Assisted Stenting, and Large-Scal. Annotation of Biomedical Data and Expert Label Synthesis. Springer International Publishing; 2017: 39-46.
CrossRef
Google scholar
|
[35] |
Tetteh G, Efremov V, Forkert ND, et al. DeepVesselNet: vessel segmentation, centerline prediction, and bifurcation detection in 3-D angiographic volumes. Front Neurosci. 2020; 14: 592352.
CrossRef
Google scholar
|
[36] |
Zhao F, Chen Y, Chen F, et al. Semi-supervised cerebrovascular segmentation by hierarchical convolutional neural network. IEEE Access. 2018; 6: 67841-67852.
CrossRef
Google scholar
|
[37] |
Kandil H, Soliman A, Taher F, Mahmoud A, Elmaghraby A, El-Baz A. Using 3-D CNNs and local blood flow information to segment cerebral vasculature. In: 2018 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). IEEE; 2018: 701-705.
CrossRef
Google scholar
|
[38] |
Zhang B, Liu S, Zhou S, et al. Cerebrovascular segmentation from TOF-MRA using model-and data-driven method via sparse labels. Neurocomputing. 2020; 380: 162-179.
CrossRef
Google scholar
|
[39] |
Todorov MI, Paetzold JC, Schoppe O, et al. Machine learning analysis of whole mouse brain vasculature. Nat Methods. 2020; 17(4): 442-449.
CrossRef
Google scholar
|
[40] |
Luo Y, Cheng H, Yang L. Size-invariant fully convolutional neural network for vessel segmentation of digital retinal images. In: 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA). 2016.
|
[41] |
Feng Z, Yang J, Yao L. Patch-based fully convolutional neural network with skip connections for retinal blood vessel segmentation. In: 2017 IEEE International Conference on Image Processing (ICIP). 2017: 1742-1746.
CrossRef
Google scholar
|
[42] |
Soomro TA, Afifi AJ, Gao J, Hellwich O, Zheng L, Paul M. Strided fully convolutional neural network for boosting the sensitivity of retinal blood vessels segmentation. Expert Syst Appl. 2019; 134: 36-52.
CrossRef
Google scholar
|
[43] |
Gobinath C, Gopinath MP. Attention aware fully convolutional deep learning model for retinal blood vessel segmentation. J Intell Fuzzy Syst. 2023; 44(4): 6413-6423.
CrossRef
Google scholar
|
[44] |
Khan TM, Robles-Kelly A. Naqvi SS. RC-Net: a convolutional neural network for retinal vessel segmentation. In: 2021 International Conference on Digital Image Computing: Techniques and Applications (DICTA 2021). IEEE; IAPR; Australian Government, Department of Defence, Defence Science and Technology Group; APRS; MathWorks; SmartSat CRC; AI4Space; Singular Health; Griffith University; Destination Gold Coast; 2021: 606-612.
CrossRef
Google scholar
|
[45] |
Dasgupta A, Singh S. A fully convolutional neural network based structured prediction approach towards the retinal vessel segmentation. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017). IEEE; EMB; IEEE Signal Processing Society; 2017: 248-251.
CrossRef
Google scholar
|
[46] |
Oliveira A, Pereira S, Silva CA. Retinal vessel segmentation based on fully convolutional neural networks. Expert Syst Appl. 2018; 112: 229-242.
CrossRef
Google scholar
|
[47] |
Lu J, Xu Y, Chen M, Luo Y. A coarse-to-fine fully convolutional neural network for fundus vessel segmentation. Symmetry. 2018; 10(11): 607.
CrossRef
Google scholar
|
[48] |
Jiang Z, Zhang H, Wang Y, Ko S-B. Retinal blood vessel segmentation using fully convolutional network with transfer learning. Comput Med Imag Graph. 2018; 68: 1-15.
CrossRef
Google scholar
|
[49] |
Araujo RJ, Cardoso JS, Oliveira HP. A single-resolution fully convolutional network for retinal vessel segmentation in raw fundus images. In: Ricci E, Bulo S, Snoek C, Lanz O, Messelodi S, Sebe N, eds. Image Analysis and Processing -ICIAP 2019, PT II. International Association for Pattern Recognition, Italian Association for Computer Vision, Pattern Recognition & Machine Learning; University of Trento; Fondazione Bruno Kessler, 2019: 59–69.
CrossRef
Google scholar
|
[50] |
Jiang Y, Wang F, Gao J, Liu W. Efficient BFCN for automatic retinal vessel segmentation. J Ophthalmol. 2020; 2020: 6439407.
CrossRef
Google scholar
|
[51] |
Khan TM, Naqvi SS, Arsalan M, Khan MA, Khan HA, Haider A. Exploiting residual edge information in deep fully convolutional neural networks for retinal vessel segmentation. In: 2020 International Joint Conference on Neural Networks (IJCNN). IEEE; IEEE Computational Intelligence Society; International Neural Network Society; 2020.
CrossRef
Google scholar
|
[52] |
Sathananthavathi V, Indumathi G, Ranjani AS. Parallel architecture of fully convolved neural network for retinal vessel segmentation. J Digit Imag. 2020; 33(1): 168-180.
CrossRef
Google scholar
|
[53] |
Atli İ, Gedik OS. Sine-Net: a fully convolutional deep learning architecture for retinal blood vessel segmentation. Eng Sci Technol. 2021; 24(2): 271-283.
CrossRef
Google scholar
|
[54] |
Samuel PM, Veeramalai T. VSSC Net: vessel specific skip chain convolutional network for blood vessel segmentation. Comput Methods Progr Biomed. 2021; 198: 105769.
CrossRef
Google scholar
|
[55] |
Xu Y, Mao Z, Liu C, Wang B. Pulmonary vessel segmentation via stage-wise convolutional networks with orientation-based region growing optimization. IEEE Access. 2018; 6: 71296-71305.
CrossRef
Google scholar
|
[56] |
Wang Y, Chen J, Liu C, Mao Z. Stacked fully convolutional networks for pulmonary vessel segmentation. In: 2018 IEEE Visual Communications and Image Processing (VCIP); 2018: 1-4.
CrossRef
Google scholar
|
[57] |
Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. Lect Notes Comput Sci. 2015: 234-241. Accessed February 26, 2024. http://arxiv.org/abs/1505.04597
CrossRef
Google scholar
|
[58] |
Li Q, Zhong S, Chen Z, et al. A high-speed end-to-end approach for retinal arteriovenous segmentation. In: Li Q, Wang L, Zhou M, Sun L, Qiu S, Liu H, eds. 2017 10th International Congress on Image and Signal Processing, Biomedical Engineering and Informatics (CISP-BMEI). IEEE Engineering in Medicine and Biology Society; AAi; 2017.
|
[59] |
Gao X, Cai Y, Qiu C, Cui Y. Retinal blood vessel segmentation based on the Gaussian matched filter and U-Net. In: 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). 2017: 1-5.
CrossRef
Google scholar
|
[60] |
Luo L, Chen D, Xue D. Retinal blood vessels semantic segmentation method based on modified U-Net. In: 2018 Chinese Control and Decision Conference (CCDC). 2018: 1892-1895.
CrossRef
Google scholar
|
[61] |
Xu X, Tan T, Xu F. An improved U-Net architecture for simultaneous arteriole and venule segmentation in fundus image. In: Nixon M, Mahmoodi S, Zwiggelaar R, eds. Medical Image Understanding and Analysis. Springer International Publishing; 2018: 333-340.
CrossRef
Google scholar
|
[62] |
Lopes AP, Ribeiro A, Silva CA. Dilated convolutions in retinal blood vessels segmentation. In: 2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG). 2019: 1-4.
CrossRef
Google scholar
|
[63] |
Biswas R, Vasan A, Roy SS. Dilated deep neural network for segmentation of retinal blood vessels in fundus images. Iranian J Sci Technol Trans Electr Eng. 2020; 44(1): 505-518.
CrossRef
Google scholar
|
[64] |
Lv Y, Ma H, Li J, Liu S. Attention guided U-Net with atrous convolution for accurate retinal vessels segmentation. IEEE Access. 2020; 8: 32826-32839.
CrossRef
Google scholar
|
[65] |
Fu Q, Li S, Wang X. MSCNN-AM: a multi-scale convolutional neural network with attention mechanisms for retinal vessel segmentation. IEEE Access. 2020; 8: 163926-163936.
CrossRef
Google scholar
|
[66] |
Chen C, Chuah JH, Ali R. Retinal vessel segmentation in fundus images using convolutional neural network. In: 2021 International Conference on High Performance Big Data and Intelligent Systems (HPBD&IS). 2021: 261-265.
CrossRef
Google scholar
|
[67] |
Sun M, Li K, Qi X, Dang H, Zhang G. Contextual information enhanced convolutional neural networks for retinal vessel segmentation in color fundus images. J Vis Commun Image Represent. 2021; 77: 103134.
CrossRef
Google scholar
|
[68] |
Wu J, Liu Y, Zhu Y, Li Z. Atrous residual convolutional neural network based on U-Net for retinal vessel segmentation. PLoS One. 2022; 17(8): 1-16.
CrossRef
Google scholar
|
[69] |
Ouyang J, Liu S, Peng H, Garg H, Thanh DNH. LEA U-Net: a U-Net-based deep learning framework with local feature enhancement and attention for retinal vessel segmentation. Complex Intell Syst. 2023; 9(6): 6753-6766.
CrossRef
Google scholar
|
[70] |
Soomro TA, Afifi AJ, Gao J, Hellwich O, Paul M, Zheng L. Strided U-Net model: retinal vessels segmentation using dice loss. In: 2018 Digital Image Computing: Techniques and Applications (DICTA); 2018: 1-8.
CrossRef
Google scholar
|
[71] |
Soomro TA, Afifi AJ, Ali Shah A, et al. Impact of image enhancement technique on CNN model for retinal blood vessels segmentation. IEEE Access. 2019; 7: 158183-158197.
CrossRef
Google scholar
|
[72] |
Sun K, Chen Y, Chao Y, Geng J, Chen Y. A retinal vessel segmentation method based improved U-Net model. Biomed Signal Process Control. 2023; 82: 104574.
CrossRef
Google scholar
|
[73] |
Rong Y, Xiong Y, Li C, et al. Segmentation of retinal vessels in fundus images based on U-Net with self-calibrated convolutions and spatial attention modules. Med Biol Eng Comput. 2023; 61(7): 1745-1755.
CrossRef
Google scholar
|
[74] |
Mostafiz T, Jarin I, Fattah SA, Shahnaz C. Retinal blood vessel segmentation using residual block incorporated U-Net architecture and fuzzy inference system. In: 2018 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE); 2018: 106-109.
CrossRef
Google scholar
|
[75] |
Alom MZ, Hasan M, Yakopcic C, Taha TM, Asari VK. Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation. Computer Vision and Pattern Recognition abs/1802.06955. 2018.
CrossRef
Google scholar
|
[76] |
Pan X, Zhang Q, Zhang H, Li S. A fundus retinal vessels segmentation scheme based on the improved deep learning U-Net model. IEEE Access. 2019; 7: 122634-122643.
CrossRef
Google scholar
|
[77] |
Li D, Dharmawan DA, Ng BP, Rahardja S. Residual U-Net for retinal vessel segmentation. In: 2019 IEEE International Conference on Image Processing (ICIP). 2019: 1425-1429.
CrossRef
Google scholar
|
[78] |
Ding H, Cui X, Chen L, Zhao K. MRU-NET: a U-shaped network for retinal vessel segmentation. Appl Sci. 2020; 10(19): 6823.
CrossRef
Google scholar
|
[79] |
Adarsh R, Amarnageswarao G, Pandeeswari R, Deivalakshmi S. Dense residual convolutional auto encoder for retinal blood vessels segmentation. In: 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). 2020: 280-284.
CrossRef
Google scholar
|
[80] |
Guo C, Szemenyei M, Yi Y, Xue Y, Zhou W, Li Y. Dense residual network for retinal vessel segmentation. In: ICASSP 2020 -2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); 2020: 1374-1378.
CrossRef
Google scholar
|
[81] |
Wang N, Li K, Zhang G, Zhu Z, Wang P. Improvement of retinal vessel segmentation method based on U-Net. Electronics. 2023; 12(2): 262.
CrossRef
Google scholar
|
[82] |
Wang C, Zhao Z, Ren Q, Xu Y, Yu Y. Dense U-net based on patch-based learning for retinal vessel segmentation. Entropy. 2019; 21(2): 168.
CrossRef
Google scholar
|
[83] |
Luo Z, Zhang Y, Zhou L, Zhang B, Luo J, Wu H. Micro-vessel image segmentation based on the AD-UNet model. IEEE Access. 2019; 7: 143402-143411.
CrossRef
Google scholar
|
[84] |
Cheng Y, Ma M, Zhang L, Jin C, Ma L, Zhou Y. Retinal blood vessel segmentation based on densely connected U-Net. Math Biosci Eng. 2020; 17(4): 3088-3108.
CrossRef
Google scholar
|
[85] |
Mou L, Chen L, Cheng J, Gu Z, Zhao Y, Liu J. Dense dilated network with probability regularized walk for vessel detection. IEEE Trans Med Imag. 2020; 39(5): 1392-1403.
CrossRef
Google scholar
|
[86] |
Zhang Y, Chung ACS. Deep supervision with additional labels for retinal vessel segmentation task. In: Frangi A, Schnabel J, Davatzikos C, AlberolaLopez C, Fichtinger G, eds. Medical Image Computing and Computer Assisted Intervention -MICCAI 2018, PT II. NVIDIA Inc; Siemens Healthineers GmbH; Guangzhou Shiyuan Elect Co Ltd; Subtle Med Inc; Arterys Inc; Claron Technol Inc; ImSight Inc; ImFusion GmbH; Medtron Plc; Depwise Inc; Carl Zeiss AG; Eurographics; Med Image Computing and Computer Assisted Intervention; 2018: 83-91.
CrossRef
Google scholar
|
[87] |
Yin P, Yuan R, Cheng Y, Wu Q. Deep guidance network for biomedical image segmentation. IEEE Access. 2020; 8: 116106-116116.
CrossRef
Google scholar
|
[88] |
Zhang Y, Fang J, Chen Y, Jia L. Edge-aware U-net with gated convolution for retinal vessel segmentation. Biomed Signal Process Control. 2022; 73: 103472.
CrossRef
Google scholar
|
[89] |
Tang X, Zhong B, Peng J, Hao B, Li J. Multi-scale channel importance sorting and spatial attention mechanism for retinal vessels segmentation. Appl Soft Comput. 2020; 93: 106353.
CrossRef
Google scholar
|
[90] |
Wang D, Haytham A, Pottenburgh J, Saeedi O, Tao Y. Hard attention net for automatic retinal vessel segmentation. IEEE J Biomed Health Inf. 2020; 24(12): 3384-3396.
CrossRef
Google scholar
|
[91] |
Li W, Zhang M, Chen D. Fundus retinal blood vessel segmentation based on active learning. In: 2020 International Conference on Computer Information and Big Data Applications (CIBDA); 2020: 264-268.
CrossRef
Google scholar
|
[92] |
Wang B, Wang S, Qiu S, Wei W, Wang H, He H. CSU-Net: a context spatial U-Net for accurate blood vessel segmentation in fundus images. IEEE J Biomed Health Inf. 2021; 25(4): 1128-1138.
CrossRef
Google scholar
|
[93] |
Wu H, Wang W, Zhong J, Lei B, Wen Z, Qin J. SCS-Net: a scale and context sensitive network for retinal vessel segmentation. Med Image Anal. 2021; 70: 102025.
CrossRef
Google scholar
|
[94] |
Dong F, Wu D, Guo C, Zhang S, Yang B, Gong X. CRAUNet: a cascaded residual attention U-Net for retinal vessel segmentation. Comput Biol Med. 2022; 147: 105651.
CrossRef
Google scholar
|
[95] |
Wang D, Hu G, Lyu C. FRNet: an end-to-end feature refinement neural network for medical image segmentation. Vis Comput. 2021; 37(5): 1101-1112.
CrossRef
Google scholar
|
[96] |
Li K, Qi X, Luo Y, Yao Z, Zhou X, Sun M. Accurate retinal vessel segmentation in color fundus images via fully attention-based networks. IEEE J Biomed Health Inf. 2021; 25(6): 2071-2081.
CrossRef
Google scholar
|
[97] |
Islam MT, Khan HA, Naveed K, Nauman A, Gulfam SM, Kim SW. LUVS-Net: a lightweight U-Net vessel segmentor for retinal vasculature detection in fundus images. Electronics. 2023; 12(8): 1786.
CrossRef
Google scholar
|
[98] |
Sanches P, Meyer C, Vigon V, Naegel B. Cerebrovascular network segmentation on MRA images with deep learning. 2018. Accessed October 25, 2023. http://arxiv.org/abs/1812.01752
|
[99] |
Livne M, Rieger J, Aydin OU, et al. A U-Net deep learning framework for high performance vessel segmentation in patients with cerebrovascular disease. Front Neurosci. 2019; 13.
CrossRef
Google scholar
|
[100] |
Quon JL, Chen LC, Kim L, et al. Deep learning for automated delineation of pediatric cerebral arteries on pre-operative brain magnetic resonance imaging. Front Surg. 2020; 7.
CrossRef
Google scholar
|
[101] |
Hadji SE, Moccia S, Scorza D, et al. Brain-vascular segmentation for SEEG planning via a 3D fully-convolutional neural network. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2019: 1014-1017.
CrossRef
Google scholar
|
[102] |
Fan S, Bian Y, Chen H, Kang Y, Yang Q, Tan T. Unsupervised cerebrovascular segmentation of TOF-MRA images based on deep neural network and hidden Markov random field model. Front Neuroinf. 2020; 13: 77.
CrossRef
Google scholar
|
[103] |
Chao Z, Xu W. A new general maximum intensity projection technology via the hybrid of U-Net and radial basis function neural network. J Digit Imag. 2021; 34(5): 1264-1278.
CrossRef
Google scholar
|
[104] |
Wang Y, Yan G, Zhu H, et al. JointVesselNet: joint volume-projection convolutional embedding networks for 3D cerebrovascular segmentation. In: Martel AL, Abolmaesumi P, Stoyanov D, et al, eds. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. Springer International Publishing; 2020: 106-116.
CrossRef
Google scholar
|
[105] |
Liu Y, Kwak H-S, Oh I-S. Cerebrovascular segmentation model based on spatial attention-guided 3D inception U-Net with multi-directional MIPs. Appl Sci. 2022; 12(5): 2288.
CrossRef
Google scholar
|
[106] |
Hilbert A, Madai VI, Akay EM, et al. BRAVE-NET: fully automated arterial brain vessel segmentation in patients with cerebrovascular disease. Front Artif Intell. 2020; 3: 552258.
CrossRef
Google scholar
|
[107] |
Fu F, Wei J, Zhang M, et al. Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network. Nat Commun. 2020; 11(1): 4829.
CrossRef
Google scholar
|
[108] |
Huang D, Yin L, Guo H, Tang W, Wan TR. FAU-Net: fixup initialization channel attention neural network for complex blood vessel segmentation. Appl Sci. 2020; 10(18): 6280.
CrossRef
Google scholar
|
[109] |
Guo X, Xiao R, Lu Y, et al. Cerebrovascular segmentation from TOF-MRA based on multiple-U-net with focal loss function. Comput Methods Progr Biomed. 2021; 202: 105998.
CrossRef
Google scholar
|
[110] |
Chen Y, Fan S, Chen Y, et al. Vessel segmentation from volumetric images: a multi-scale double-pathway network with class-balanced loss at the voxel level. Med Phys. 2021; 48(7): 3804-3814.
CrossRef
Google scholar
|
[111] |
Lee K, Sunwoo L, Kim T, Lee KJ. Spider U-Net: incorporating inter-slice connectivity using LSTM for 3D blood vessel segmentation. Appl Sci. 2021; 11(5): 2014.
CrossRef
Google scholar
|
[112] |
Min Y, Nie S. Automatic segmentation of cerebrovascular based on deep learning. In: 2021 3rd International Conference on Artificial Intelligence and Advanced Manufacture. Association for Computing Machinery; 2022: 94-98.
CrossRef
Google scholar
|
[113] |
Zhang M, Zhang C, Wu X, et al. A neural network approach to segment brain blood vessels in digital subtraction angiography. Comput Methods Progr Biomed. 2020; 185: 105159.
CrossRef
Google scholar
|
[114] |
Lin F, Xia Y, Song S, Ravikumar N, Frangi AF. High-throughput 3DRA segmentation of brain vasculature and aneurysms using deep learning. Comput Methods Progr Biomed. 2023; 230: 107355.
CrossRef
Google scholar
|
[115] |
Cui H, Liu X, Huang N. Pulmonary vessel segmentation based on orthogonal fused U-Net++ of chest CT images. In: Shen D, Liu T, Peters TM, et al., eds. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. Springer International Publishing; 2019: 293-300.
CrossRef
Google scholar
|
[116] |
Xu S, Zhang Z, Zhou Q, Shao W, Tan W. A pulmonary vascular extraction algorithm from chest CT/CTA images. J Healthcare Eng. 2021; 2021: 5763177.
CrossRef
Google scholar
|
[117] |
Wu R, Xin Y, Qian J, Dong Y. A multi-scale interactive U-Net for pulmonary vessel segmentation method based on transfer learning. Biomed Signal Process Control. 2023; 80: 104407.
CrossRef
Google scholar
|
[118] |
Azad R, Asadi-Aghbolaghi M. Fathy M, Escalera S. Bi-Directional ConvLSTM U-Net with Densley Connected Convolutions. IEEE; 2019: 406-415.
CrossRef
Google scholar
|
[119] |
Zhou Q, Zhao R, Hu Y, Wang J, Zhou R. Hierarchical hybrid networks for automatic pulmonary blood vessel segmentation in computed tomography images. IEEE ACM Trans Comput Biol Bioinf. 2023; 21(4): 1-12.
CrossRef
Google scholar
|
[120] |
Zulfiqar M, Stanuch M, Wodzinski M, Skalski A. DRU-Net: pulmonary artery segmentation via dense residual U-network with hybrid loss function. Sensors. 2023; 23(12): 5427.
CrossRef
Google scholar
|
[121] |
Wu R, Xin Y, Dong Y, Qian J. A dual-path U-Net for pulmonary vessel segmentation method based on lightweight 3D attention. Mach Vis Appl. 2023; 34(5): 87.
CrossRef
Google scholar
|
[122] |
Goodfellow I, Pouget-Abadie J. Mirza M, et al. Generative adversarial nets. Mach Learn. n.d.
CrossRef
Google scholar
|
[123] |
Iqbal A, Sharif M, Yasmin M, Raza M, Aftab S. Generative adversarial networks and its applications in the biomedical image segmentation: a comprehensive survey. Int J Multimed Inf Retr. 2022; 11(3): 333-368.
CrossRef
Google scholar
|
[124] |
Rammy SA, Anwar SJ, Abrar M, Zhang W. Conditional patch-based generative adversarial network for retinal vessel segmentation. In: 2019 22nd International Multitopic Conference (INMIC); 2019: 1-6.
CrossRef
Google scholar
|
[125] |
Yang T, Wu T, Li L, Zhu C. SUD-GAN: deep convolution generative adversarial network combined with short connection and dense block for retinal vessel segmentation. J Digit Imag. 2020; 33(4): 946-957.
CrossRef
Google scholar
|
[126] |
Ma J, Wei M, Ma Z, Shi L, Zhu K. Retinal vessel segmentation based on generative adversarial network and dilated convolution. In: 2019 14th International Conference on Computer Science & Education (ICCSE); 2019: 282-287.
CrossRef
Google scholar
|
[127] |
Wu C, Zou Y, Yang Z. U-GAN: generative adversarial networks with U-Net for retinal vessel segmentation. In: 2019 14th International Conference on Computer Science & Education (ICCSE); 2019: 642-646.
CrossRef
Google scholar
|
[128] |
Zhao J, Feng Q. Deep Att-ResGAN: a retinal vessel segmentation network for color fundus images. Trait Du Signal. 2021; 38(5): 1309-1317.
CrossRef
Google scholar
|
[129] |
Zhou Y, Chen Z, Shen H, Zheng X, Zhao R, Duan X. A refined equilibrium generative adversarial network for retinal vessel segmentation. Neurocomputing. 2021; 437: 118-130.
CrossRef
Google scholar
|
[130] |
Kar MK, Neog DR, Nath MK. Retinal vessel segmentation using multi-scale residual convolutional neural network (MSR-Net) combined with generative adversarial networks. Circ Syst Signal Process. 2023; 42(2): 1206-1235.
CrossRef
Google scholar
|
[131] |
Yang M, Ye Y, Ye K, Zhou W, Hu X, Hu B. Retinal vessel segmentation in medical diagnosis using multi-scale attention generative adversarial networks. Mobile Network Appl. 2023; 28(4): 1391-1401.
CrossRef
Google scholar
|
[132] |
Khan TM, Naqvi SS, Robles-Kelly A. Razzak I. Retinal vessel segmentation via a multi-resolution contextual network and adversarial learning. Neural Network. 2023; 165: 310-320.
CrossRef
Google scholar
|
[133] |
Tu W, Hu W, Liu X, He J. DRPAN: a novel adversarial network approach for retinal vessel segmentation. In: 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA); 2019: 228-232.
CrossRef
Google scholar
|
[134] |
Dong Y, Ren W, Zhang K. Deep supervision adversarial learning network for retinal vessel segmentation. In: 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI); 2019: 1-6.
CrossRef
Google scholar
|
[135] |
Park K-B, Choi SH, Lee JY. M-GAN: retinal blood vessel segmentation by balancing losses through stacked deep fully convolutional networks. IEEE Access. 2020; 8: 146308-146322.
CrossRef
Google scholar
|
[136] |
Yue C, Ye M, Wang P, Huang D, Lu X. SRV-GAN: a generative adversarial network for segmenting retinal vessels. Math Biosci Eng. 2022; 19(10): 9948-9965.
CrossRef
Google scholar
|
[137] |
Zhang J, Yang K, Shen Z, et al. End-to-end automatic classification of retinal vessel based on generative adversarial networks with improved U-Net. Diagnostics. 2023; 13(6): 1148.
CrossRef
Google scholar
|
[138] |
Guo X, Chen C, Lu Y, et al. Retinal vessel segmentation combined with generative adversarial networks and dense U-Net. IEEE Access. 2020; 8: 194551-194560.
CrossRef
Google scholar
|
[139] |
Chen Z, Jin W, Zeng X, Xu L. Retinal vessel segmentation based on task-driven generative adversarial network. IET Image Process. 2020; 14(17): 4599-4605.
CrossRef
Google scholar
|
[140] |
Alimanov A, Islam MB. Retinal image restoration and vessel segmentation using modified cycle-CBAM and CBAM-UNet. In: 2022 Innovations in Intelligent Systems and Applications Conference (ASYU); 2022: 1-6.
CrossRef
Google scholar
|
[141] |
Huo Q, Tang G, Zhang F. Particle swarm optimization for great enhancement in semi-supervised retinal vessel segmentation with generative adversarial networks. In: Liao H, Balocco S, Wang G, et al., eds. Machine Learning and Medical Engineering for Cardiovascular Health and Intravascular Imaging and Computer Assisted Stenting. Springer International Publishing; 2019: 112-120.
CrossRef
Google scholar
|
[142] |
Lahiri A, Jain V, Mondal A, Biswas PK. Retinal vessel segmentation under extreme low annotation: a gan based semi-supervised approach. In: 2020 IEEE International Conference on Image Processing (ICIP); 2020: 418-422.
CrossRef
Google scholar
|
[143] |
Ma Y, Hua Y, Deng H, et al. Self-supervised vessel segmentation via adversarial learning. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV); 2021: 7516-7525.
CrossRef
Google scholar
|
[144] |
Chen Y, Ye M, Wang P, Huang D, Lu X. Generative adversarial network combined with SE-ResNet and dilated inception block for segmenting retinal vessels. Comput Intell Neurosci. 2022; 2022: 1-13.
CrossRef
Google scholar
|
[145] |
Liu X, Zhang D, Yao J, Tang J. Transformer and convolutional based dual branch network for retinal vessel segmentation in OCTA images. Biomed Signal Process Control. 2023; 83: 104604.
CrossRef
Google scholar
|
[146] |
Kossen T, Subramaniam P, Madai VI, et al. Synthesizing anonymized and labeled TOF-MRA patches for brain vessel segmentation using generative adversarial networks. Comput Biol Med. 2021; 131: 104254.
CrossRef
Google scholar
|
[147] |
Subramaniam P, Kossen T, Ritter K, et al. Generating 3D TOF-MRA volumes and segmentation labels using generative adversarial networks. Med Image Anal. 2022; 78: 102396.
CrossRef
Google scholar
|
[148] |
Quintana-Quintana OJ, De León-Cuevas A, González-Gutiérrez A, Gorrostieta-Hurtado E. Tovar-Arriaga S. Dual U-Net-based conditional generative adversarial network for blood vessel segmentation with reduced cerebral MR training volumes. Micromachines. 2022; 13(6): 823.
CrossRef
Google scholar
|
[149] |
Chen Y, Jin D, Guo B, Bai X. Attention-assisted adversarial model for cerebrovascular segmentation in 3D TOF-MRA volumes. IEEE Trans Med Imag. 2022; 41(12): 3520-3532.
CrossRef
Google scholar
|
[150] |
Amran D, Artzi M, Aizenstein O, Ben Bashat D, Bermano AH. BV-GAN: 3D time-of-flight magnetic resonance angiography cerebrovascular vessel segmentation using adversarial CNNs. J Med Imag. 2022; 9(04): 044503.
CrossRef
Google scholar
|
[151] |
Chen Z, Xie L, Chen Y, et al. Generative adversarial network based cerebrovascular segmentation for time-of-flight magnetic resonance angiography image. Neurocomputing. 2022; 488: 657-668.
CrossRef
Google scholar
|
[152] |
Chen C, Zhou K, Lu T, Ning H, Xiao R. Integration-and separation-aware adversarial model for cerebrovascular segmentation from TOF-MRA. Comput Methods Progr Biomed. 2023; 233: 107475.
CrossRef
Google scholar
|
[153] |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. In: Guyon I, Luxburg U, Bengio S, et al., eds. Advances in Neural Information Processing Systems 30 (NIPS 2017); 2017.
|
[154] |
Li Y, Miao N, Ma L, Shuang F, Huang X. Transformer for object detection: review and benchmark. Eng Appl Artif Intell. 2023; 126: 107021.
CrossRef
Google scholar
|
[155] |
Li J, Ye J, Zhang R, et al. CPFTransformer: transformer fusion context pyramid medical image segmentation network. Front Neurosci. 2023; 17.
CrossRef
Google scholar
|
[156] |
Zhang H, Zhong X, Li Z, et al. TiM-Net: transformer in M-Net for retinal vessel segmentation. J Healthcare Eng. 2022; 2022: 9016401.
CrossRef
Google scholar
|
[157] |
Huang X, Deng Z, Li D, Yuan X, Fu Y. MISSFormer: an effective transformer for 2D medical image segmentation. IEEE Trans Med Imag. 2023; 42(5): 1484-1494.
CrossRef
Google scholar
|
[158] |
Wang C, Xu R, Xu S, Meng W, Zhang X. DA-Net: dual branch transformer and adaptive strip upsampling for retinal vessels segmentation. In: Wang L, Dou Q, Fletcher PT, Speidel S, Li S, eds. Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. Springer Nature Switzerland; 2022: 528-538.
CrossRef
Google scholar
|
[159] |
Li Y, Zhang Y, Liu J-Y, et al. Global transformer and dual local attention network via deep-shallow hierarchical feature fusion for retinal vessel segmentation. IEEE Trans Cybern. 2023; 53(9): 5826-5839.
CrossRef
Google scholar
|
[160] |
Tan X, Chen X, Meng Q, et al. OCT2Former: a retinal OCT-angiography vessel segmentation transformer. Comput Methods Progr Biomed. 2023; 233: 107454.
CrossRef
Google scholar
|
[161] |
Zhang H, Ni W, Luo Y, Feng Y, Song R, Wang X. TUnet-LBF: retinal fundus image fine segmentation model based on transformer Unet network and LBF. Comput Biol Med. 2023; 159: 106937.
CrossRef
Google scholar
|
[162] |
Lin J, Huang X, Zhou H, Wang Y, Zhang Q. Stimulus-guided adaptive transformer network for retinal blood vessel segmentation in fundus images. Med Image Anal. 2023; 89: 102929.
CrossRef
Google scholar
|
[163] |
Hatamizadeh A, Tang Y, Nath V, et al. UNETR: transformers for 3D medical image segmentation. In: 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022: 1748-1758.
CrossRef
Google scholar
|
[164] |
Chen C, Zhou K, Wang Z, Xiao R. Generative consistency for semi-supervised cerebrovascular segmentation from TOF-MRA. IEEE Trans Med Imag. 2023; 42(2): 346-353.
CrossRef
Google scholar
|
[165] |
Li Y, Zhang Q, Zhou H, Li J, Li X, Li A. Cerebrovascular segmentation from mesoscopic optical images using Swin Transformer. J Innovat Opt Health Sci. 2023; 16(04): 2350009.
CrossRef
Google scholar
|
[166] |
Wu Y, Qi S, Wang M, et al. Transformer-based 3D U-Net for pulmonary vessel segmentation and artery-vein separation from CT images. Med Biol Eng Comput. 2023; 61(10): 2649-2663.
CrossRef
Google scholar
|
[167] |
Shin SY, Lee S, Yun ID, Lee KM. Deep vessel segmentation by learning graphical connectivity. Med Image Anal. 2019; 58: 101556.
CrossRef
Google scholar
|
[168] |
Li Y, Zhang Y, Cui W, Lei B, Kuang X, Zhang T. Dual encoder-based dynamic-channel graph convolutional network with edge enhancement for retinal vessel segmentation. IEEE Trans Med Imag. 2022; 41(8): 1975-1989.
CrossRef
Google scholar
|
[169] |
Shi C, Xu C, He J, et al. Graph-based convolution feature aggregation for retinal vessel segmentation. Simulat Model Pract Theor. 2022; 121: 102653.
CrossRef
Google scholar
|
[170] |
Tian H, Li L, Song F. Study on the deformations of the lamina cribrosa during glaucoma. Acta Biomater. 2017; 55: 340-348.
CrossRef
Google scholar
|
[171] |
Ekici E, Moghimi S. Advances in understanding glaucoma pathogenesis: a multifaceted molecular approach for clinician scientists. Mol Aspect Med. 2023; 94: 101223.
CrossRef
Google scholar
|
[172] |
Chen X, Xu Y, Yan S, Wong DWK, Wong TY, Liu J. Automatic feature learning for glaucoma detection based on deep learning. In: Navab N, Hornegger J, Wells WM, Frangi AF, eds. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Springer International Publishing; 2015: 669-677.
CrossRef
Google scholar
|
[173] |
Orlando JI, Prokofyeva E, del Fresno M, Blaschko MB. Convolutional neural network transfer for automated glaucoma identification. In: Romero E, Lepore N, Brieva J, Larrabide I, eds. 12th International Symposium on Medical Information Processing and Analysis. SPIE; 2017:101600U.
CrossRef
Google scholar
|
[174] |
Chai Y, He L, Mei Q, Liu H, Xu L. Deep learning through two-branch convolutional neuron network for glaucoma diagnosis. In: Chen H, Zeng DD, Karahanna E, Bardhan I, eds. Smart Health. Springer International Publishing; 2017: 191-201.
CrossRef
Google scholar
|
[175] |
Raghavendra U, Fujita H, Bhandary SV, Gudigar A, Tan JH, Acharya UR. Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images. Inf Sci. 2018; 441: 41-49.
CrossRef
Google scholar
|
[176] |
Serte S, Serener A. Graph-based saliency and ensembles of convolutional neural networks for glaucoma detection. IET Image Process. 2021; 15(3): 797-804.
CrossRef
Google scholar
|
[177] |
Sujithra BS, Albert Jerome S. Adaptive cluster-based superpixel segmentation and BMWMMBO-based DCNN classification for glaucoma detection. Signal Image Video Process. 2023; 18(1): 465-474.
CrossRef
Google scholar
|
[178] |
Jain A, Bhatnagar V, Rao ACS, Khari M. Retina disease prediction using modified convolutional neural network based on Inception-ResNet model with support vector machine classifier. Comput Intell. 2023; 39(6): 1088-1111.
CrossRef
Google scholar
|
[179] |
AbdelMaksoud E, Barakat S, Elmogy M. A computer-aided diagnosis system for detecting various diabetic retinopathy grades based on a hybrid deep learning technique. Med Biol Eng Comput. 2022; 60(7): 2015-2038.
CrossRef
Google scholar
|
[180] |
Li X, Hu X, Yu L, Zhu L, Fu C-W, Heng P-A. CANet: cross-disease attention network for joint diabetic retinopathy and diabetic macular edema grading. IEEE Trans Med Imag. 2020; 39(5): 1483-1493.
CrossRef
Google scholar
|
[181] |
Sangeethaa SN, Uma Maheswari P. An intelligent model for blood vessel segmentation in diagnosing DR using CNN. J Med Syst. 2018; 42(10): 175.
CrossRef
Google scholar
|
[182] |
Kumaran G, Chelliah BJ, Arun Kumar S. VESDNet: deep vessel segmentation (U) network for the early diagnosis of diabetic retinopathy. In: Kannan RJ, Geetha S, Sashikumar S, Diver C, eds. International Virtual Conference on Industry 4.0. Springer Singapore; 2021: 375-385.
CrossRef
Google scholar
|
[183] |
Agarwal V, Sipani R, Saranya P. Abnormal blood vessels segmentation for proliferative diabetic retinopathy screening using convolutional neural network. In: Singh M, Tyagi V, Gupta PK, Flusser J, Ören T, Sonawane VR, eds. Advances in Computing and Data Sciences. Springer International Publishing; 2021: 162-170.
CrossRef
Google scholar
|
[184] |
Liu R, Gao S, Zhang H, Wang S, Zhou L, Liu J. MTNet: a combined diagnosis algorithm of vessel segmentation and diabetic retinopathy for retinal images. PLoS One. 2022; 17(11): 1-17.
CrossRef
Google scholar
|
[185] |
Xu K, Feng D, Mi H. Deep convolutional neural network-based early automated detection of diabetic retinopathy using fundus image. Molecules. 2017; 22(12): 2054.
CrossRef
Google scholar
|
[186] |
Khanna M, Singh LK, Thawkar S, Goyal M. Deep learning based computer-aided automatic prediction and grading system for diabetic retinopathy. Multimed Tool Appl. 2023; 82(25): 39255-39302.
CrossRef
Google scholar
|
[187] |
Liu X, Ali TK, Singh P, et al. Deep learning to detect OCT-derived diabetic macular edema from color retinal photographs: a multicenter validation study. Ophthalmol Retina. 2022; 6(5): 398-410.
CrossRef
Google scholar
|
[188] |
Rahim SS, Palade V, Almakky I, Holzinger A. Detection of diabetic retinopathy and maculopathy in eye fundus images using deep learning and image augmentation. In: Holzinger A, Kieseberg P, Tjoa AM, Weippl E, eds. Machine Learning and Knowledge Extraction. Springer International Publishing; 2019: 114-127.
CrossRef
Google scholar
|
[189] |
Sahlsten J, Jaskari J, Kivinen J, et al. Deep learning fundus image analysis for diabetic retinopathy and macular edema grading. Sci Rep. 2019; 9(1): 10750.
CrossRef
Google scholar
|
[190] |
Padmasini N, Umamaheswari R. Automated detection of multiple structural changes of diabetic macular oedema in SDOCT retinal images through transfer learning in CNNs. IET Image Process. 2020; 14(16): 4067-4075.
CrossRef
Google scholar
|
[191] |
Guo X, Lu X, Zhang B, Hu X, Che S. Automatic detection and grading of diabetic macular edema based on a deep neural network. Retina. 2022; 42(6): 1095-1102.
CrossRef
Google scholar
|
[192] |
Atteia G, Abdel Samee N, El-Kenawy E-SM, Ibrahim A. CNN-hyperparameter optimization for diabetic maculopathy diagnosis in optical coherence tomography and fundus retinography. Mathematics. 2022; 10(18): 3274.
CrossRef
Google scholar
|
[193] |
Deshpande A, Jamilpour N, Jiang B, et al. Automatic segmentation, feature extraction and comparison of healthy and stroke cerebral vasculature. Neuroimage Clin. 2021; 30: 102573.
CrossRef
Google scholar
|
[194] |
Yalçın S, Vural H. Brain stroke classification and segmentation using encoder-decoder based deep convolutional neural networks. Comput Biol Med. 2022; 149: 105941.
CrossRef
Google scholar
|
[195] |
Hamer NAJ. Cor pulmonale from repeated pulmonary embolism. Postgrad Med. 1958; 34(387): 19-23.
CrossRef
Google scholar
|
[196] |
Becattini C, Agnelli G. Acute pulmonary embolism: mortality prediction by the 2014 European Society of Cardiology risk stratification model. Eur Respir J. 2017; 49(1): 1601732.
CrossRef
Google scholar
|
[197] |
Blackmon KN, Florin C, Bogoni L, et al. Computer-aided detection of pulmonary embolism at CT pulmonary angiography: can it improve performance of inexperienced readers? Eur Radiol. 2011; 21(6): 1214-1223.
CrossRef
Google scholar
|
[198] |
Yang X, Lin Y, Su J, et al. A two-stage convolutional neural network for pulmonary embolism detection from CTPA images. IEEE Access. 2019; 7: 84849-84857.
CrossRef
Google scholar
|
[199] |
Huang S-C, Kothari T, Banerjee I, et al. PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging. NPJ Digit Med. 2020; 3(1): 61.
CrossRef
Google scholar
|
[200] |
Liu W, Liu M, Guo X, et al. Evaluation of acute pulmonary embolism and clot burden on CTPA with deep learning. Eur Radiol. 2020; 30(6): 3567-3575.
CrossRef
Google scholar
|
[201] |
Steffes LC, Froistad AA, Andruska A, et al. A Notch3-marked subpopulation of vascular smooth muscle cells is the cell of origin for occlusive pulmonary vascular lesions. Circulation. 2020; 142(16): 1545-1561.
CrossRef
Google scholar
|
[202] |
Wang M, Wang J, Hu Y, Guo B, Tang H. Detection of pulmonary hypertension with six training strategies based on deep learning technology. Comput Intell. 2022; 38(5): 1684-1706.
CrossRef
Google scholar
|
[203] |
Diller G-P, Benesch Vidal ML, Kempny A, et al. A framework of deep learning networks provides expert-level accuracy for the detection and prognostication of pulmonary arterial hypertension. Eur Heart J Cardiovasc Imaging. 2022; 23(11): 1447-1456.
CrossRef
Google scholar
|
[204] |
Stéphanou A, Lesart AC, Deverchère J, Juhem A, Popov A, Estève F. How tumour-induced vascular changes alter angiogenesis: insights from a computational model. J Theor Biol. 2017; 419: 211-226.
CrossRef
Google scholar
|
[205] |
Hu Y, Song J, Feng A, et al. Recent advances in nanotechnology-based targeted delivery systems of active constituents in natural medicines for cancer treatment. Molecules. 2023; 28(23): 7767.
CrossRef
Google scholar
|
[206] |
Shan S, Chen J, Sun Y, et al. Functionalized macrophage exosomes with panobinostat and PPM1D-siRNA for diffuse intrinsic pontine gliomas therapy. Adv Sci. 2022; 9(21): 2200353.
CrossRef
Google scholar
|
[207] |
Zhao W, He H, Zhao J, Sun J. Adrenal tumor vessels segmentation using convolutional neural network in computed tomography angiography. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2019: 1006-1009.
CrossRef
Google scholar
|
[208] |
Kostrikov S, Johnsen KB, Braunstein TH, et al. Optical tissue clearing and machine learning can precisely characterize extravasation and blood vessel architecture in brain tumors. Commun Biol. 2021; 4(1): 815.
CrossRef
Google scholar
|
[209] |
Zhu M, Zhuang J, Li Z, et al. Machine-learning-assisted single-vessel analysis of nanoparticle permeability in tumour vasculatures. Nat Nanotechnol. 2023; 18(6): 657-666.
CrossRef
Google scholar
|
[210] |
Kumar Y, Gupta B. Retinal image blood vessel classification using hybrid deep learning in cataract diseased fundus images. Biomed Signal Process Control. 2023; 84: 104776.
CrossRef
Google scholar
|
/
〈 |
|
〉 |