Deep learning technology in vascular image segmentation and disease diagnosis

Chengyang Du , Jie Zhuang , Xinglu Huang

Journal of Intelligent Medicine ›› 2024, Vol. 1 ›› Issue (1) : 6 -41.

PDF
Journal of Intelligent Medicine ›› 2024, Vol. 1 ›› Issue (1) : 6 -41. DOI: 10.1002/jim4.15
REVIEW

Deep learning technology in vascular image segmentation and disease diagnosis

Author information +
History +
PDF

Abstract

Blood vessel segmentation is a crucial aspect of medical image processing, aiding medical professionals in more accurate disease analysis and diagnosis. Manual blood vessel segmentation methods are time-consuming and cumbersome, making the development of automatic segmentation methods essential. The rapid advancements in deep learning technology have introduced new tools and methods for vascular image segmentation. In this review, we provide a comprehensive overview of deep learning-based blood vessel segmentation methods across various fields, including retinal vessel segmentation, cerebrovascular segmentation, and pulmonary vessel segmentation. Several prevalent diseases, such as retinal vascular diseases, cerebrovascular diseases, pulmonary vascular diseases, and tumors, have posed significant health challenges globally. This review also discusses the application of deep learning technology in disease diagnosis within these contexts. Finally, considering the current research landscape, we discuss existing challenges and potential future developments in blood vessel segmentation. We aim to assist researchers in gaining a comprehensive understanding and designing effective blood vessel segmentation models, ultimately offering opportunities for early disease diagnosis and treatment.

Keywords

cerebrovascular segmentation / deep learning / disease diagnosis / pulmonary vessel segmentation / retinal vessel segmentation

Cite this article

Download citation ▾
Chengyang Du, Jie Zhuang, Xinglu Huang. Deep learning technology in vascular image segmentation and disease diagnosis. Journal of Intelligent Medicine, 2024, 1(1): 6-41 DOI:10.1002/jim4.15

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li X, Carmeliet P. Targeting angiogenic metabolism in disease. Science. 2018; 359(6382): 1335-1336.

[2]

Wu J, Qin C, Ma J, et al. An immunomodulatory bioink with hollow manganese silicate nanospheres for angiogenesis. Appl Mater Today. 2021; 23: 101015.

[3]

Wang C, Oda M, Hayashi Y, et al. Tensor-cut: a tensor-based graph-cut blood vessel segmentation method and its application to renal artery segmentation. Med Image Anal. 2020; 60: 101623.

[4]

Guefrachi S, Echtioui A, Hamam H. Automated diabetic retinopathy screening using deep learning. Multimed Tool Appl. 2024; 83(24): 65249-65266.

[5]

Mateen M, Wen J, Hassan M, Nasrullah N, Sun S, Hayat S. Automatic detection of diabetic retinopathy: a review on datasets, methods and evaluation metrics. IEEE Access. 2020; 8: 48784-48811.

[6]

Abdulsahib AA, Mahmoud MA, Aris H, Gunasekaran SS, Mohammed MA. An automated image segmentation and useful feature extraction algorithm for retinal blood vessels in fundus images. Electronics. 2022; 11(9): 1295.

[7]

Ma H, Zou Y, Liu PX. MHSU-Net: a more versatile neural network for medical image segmentation. Comput Methods Progr Biomed. 2021; 208: 106230.

[8]

Chen C, Chuah JH, Ali R, Wang Y. Retinal vessel segmentation using deep learning: a review. IEEE Access. 2021; 9: 111985-112004.

[9]

Staal J, Abramoff MD, Niemeijer M, Viergever MA, van Ginneken B. Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imag. 2004; 23(4): 501-509.

[10]

Soares JVB, Leandro JJG, Cesar RM, Jelinek HF, Cree MJ. Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans Med Imag. 2006; 25(9): 1214-1222.

[11]

Fraz MM, Remagnino P, Hoppe A, et al. An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans Biomed Eng. 2012; 59(9): 2538-2548.

[12]

Odstrcilik J, Kolar R, Budai A, et al. Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database. IET Image Process. 2013; 7(4): 373-383.

[13]

Zhang J, Dashtbozorg B, Bekkers E, Pluim JPW, Duits R, ter Romeny BMH. Robust retinal vessel segmentation via locally adaptive derivative frames in orientation scores. IEEE Trans Med Imag. 2016; 35(12): 2631-2644.

[14]

Abbasi-Sureshjani S, Smit-Ockeloen I. Zhang J, Romeny BTH. Biologically-inspired supervised vasculature segmentation in SLO retinal fundus images. In: Kamel M, Campilho A, eds. Image Analysis and Recognition (ICIAR 2015). Association of Image & Machine Intelligence; 2015: 325-334.

[15]

Decencière E, Zhang X, Cazuguel G, et al. Feedback on a publicly distributed image database: the MESSIDOR database. Image Anal Stereol. 2014; 33(3): 231.

[16]

Farnell DJJ, Hatfield FN, Knox P, et al. Enhancement of blood vessels in digital fundus photographs via the application of multiscale line operators. J Franklin Inst. 2008; 345(7): 748-765.

[17]

Estrada R, Allingham MJ, Mettu PS, Cousins SW, Tomasi C, Farsiu S. Retinal artery-vein classification via topology estimation. IEEE Trans Med Imag. 2015; 34(12): 2518-2534.

[18]

Chalakkal RJ, Abdulla WH, Sinumol S. Comparative analysis of University of Auckland diabetic retinopathy database. In: Proceedings of the 9th International Conference on Signal Processing Systems. ACM; 2017: 235-239.

[19]

Pachade S, Porwal P, Thulkar D, et al. Retinal fundus multi-disease image dataset (RFMiD): a dataset for multi-disease detection research. Data. 2021; 6(2): 14.

[20]

Ahmed SU, Mocco J, Zhang X, et al. MRA versus DSA for the follow-up imaging of intracranial aneurysms treated using endovascular techniques: a meta-analysis. J Neurointerventional Surg. 2019; 11(10): 1009-1014.

[21]

Chung H, Cha E, Sunwoo L, Ye JC. Two-stage deep learning for accelerated 3D time-of-flight MRA without matched training data. Med Image Anal. 2021; 71: 102047.

[22]

Mookiah MRK, Hogg S, MacGillivray TJ, et al. A review of machine learning methods for retinal blood vessel segmentation and artery/vein classification. Med Image Anal. 2021; 68: 101905.

[23]

Zhu K, Chen Y, Ghamisi P, Jia X, Benediktsson JA. Deep convolutional capsule network for hyperspectral image spectral and spectral-spatial classification. Rem Sens. 2019; 11(3): 223.

[24]

Khalaf AF, Yassine IA, Fahmy AS. Convolutional neural networks for deep feature learning in retinal vessel segmentation. In: 2016 IEEE International Conference on Image Processing (ICIP). 2016: 385-388.

[25]

Liskowski P, Krawiec K. Segmenting retinal blood vessels with deep neural networks. IEEE Trans Med Imag. 2016; 35(11): 2369-2380.

[26]

Fan Z, Mo J-J. Automated blood vessel segmentation based on de-noising auto-encoder and neural network. In: 2016 International Conference on Machine Learning and Cybernetics (ICMLC). 2016: 849-856.

[27]

Vengalil SK, Sinha N, Kruthiventi SSS, Babu RV. Customizing CNNs for blood vessel segmentation from fundus images. In: 2016 International Conference on Signal Processing and Communications (SPCOM). 2016: 1-4.

[28]

Tan JH, Acharya UR, Bhandary SV, Chua KC, Sivaprasad S. Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network. J Comput Sci. 2017; 20: 70-79.

[29]

Guo Y, Budak Ü, Şengür A. A novel retinal vessel detection approach based on multiple deep convolution neural networks. Comput Methods Progr Biomed. 2018; 167: 43-48.

[30]

Hu K, Zhang Z, Niu X, et al. Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function. Neurocomputing. 2018; 309: 179-191.

[31]

Tian C, Fang T, Fan Y, Wu W. Multi-path convolutional neural network in fundus segmentation of blood vessels. Biocybern Biomed Eng. 2020; 40(2): 583-595.

[32]

Chala M, Nsiri B, yousfi Alaoui MHE, Soulaymani A, Mokhtari A, Benaji B. An automatic retinal vessel segmentation approach based on convolutional neural networks. Expert Syst Appl. 2021; 184: 115459.

[33]

Kamnitsas K, Ledig C, Newcombe VFJ, et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal. 2017; 36: 61-78.

[34]

Phellan R, Peixinho A, Falcão A, Forkert ND. Vascular segmentation in TOF MRA images of the brain using a deep convolutional neural network. In: Cardoso MJ, Arbel T, Lee S-L. et al., eds. Intravascular Imaging and Computer Assisted Stenting, and Large-Scal. Annotation of Biomedical Data and Expert Label Synthesis. Springer International Publishing; 2017: 39-46.

[35]

Tetteh G, Efremov V, Forkert ND, et al. DeepVesselNet: vessel segmentation, centerline prediction, and bifurcation detection in 3-D angiographic volumes. Front Neurosci. 2020; 14: 592352.

[36]

Zhao F, Chen Y, Chen F, et al. Semi-supervised cerebrovascular segmentation by hierarchical convolutional neural network. IEEE Access. 2018; 6: 67841-67852.

[37]

Kandil H, Soliman A, Taher F, Mahmoud A, Elmaghraby A, El-Baz A. Using 3-D CNNs and local blood flow information to segment cerebral vasculature. In: 2018 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). IEEE; 2018: 701-705.

[38]

Zhang B, Liu S, Zhou S, et al. Cerebrovascular segmentation from TOF-MRA using model-and data-driven method via sparse labels. Neurocomputing. 2020; 380: 162-179.

[39]

Todorov MI, Paetzold JC, Schoppe O, et al. Machine learning analysis of whole mouse brain vasculature. Nat Methods. 2020; 17(4): 442-449.

[40]

Luo Y, Cheng H, Yang L. Size-invariant fully convolutional neural network for vessel segmentation of digital retinal images. In: 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA). 2016.

[41]

Feng Z, Yang J, Yao L. Patch-based fully convolutional neural network with skip connections for retinal blood vessel segmentation. In: 2017 IEEE International Conference on Image Processing (ICIP). 2017: 1742-1746.

[42]

Soomro TA, Afifi AJ, Gao J, Hellwich O, Zheng L, Paul M. Strided fully convolutional neural network for boosting the sensitivity of retinal blood vessels segmentation. Expert Syst Appl. 2019; 134: 36-52.

[43]

Gobinath C, Gopinath MP. Attention aware fully convolutional deep learning model for retinal blood vessel segmentation. J Intell Fuzzy Syst. 2023; 44(4): 6413-6423.

[44]

Khan TM, Robles-Kelly A. Naqvi SS. RC-Net: a convolutional neural network for retinal vessel segmentation. In: 2021 International Conference on Digital Image Computing: Techniques and Applications (DICTA 2021). IEEE; IAPR; Australian Government, Department of Defence, Defence Science and Technology Group; APRS; MathWorks; SmartSat CRC; AI4Space; Singular Health; Griffith University; Destination Gold Coast; 2021: 606-612.

[45]

Dasgupta A, Singh S. A fully convolutional neural network based structured prediction approach towards the retinal vessel segmentation. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017). IEEE; EMB; IEEE Signal Processing Society; 2017: 248-251.

[46]

Oliveira A, Pereira S, Silva CA. Retinal vessel segmentation based on fully convolutional neural networks. Expert Syst Appl. 2018; 112: 229-242.

[47]

Lu J, Xu Y, Chen M, Luo Y. A coarse-to-fine fully convolutional neural network for fundus vessel segmentation. Symmetry. 2018; 10(11): 607.

[48]

Jiang Z, Zhang H, Wang Y, Ko S-B. Retinal blood vessel segmentation using fully convolutional network with transfer learning. Comput Med Imag Graph. 2018; 68: 1-15.

[49]

Araujo RJ, Cardoso JS, Oliveira HP. A single-resolution fully convolutional network for retinal vessel segmentation in raw fundus images. In: Ricci E, Bulo S, Snoek C, Lanz O, Messelodi S, Sebe N, eds. Image Analysis and Processing -ICIAP 2019, PT II. International Association for Pattern Recognition, Italian Association for Computer Vision, Pattern Recognition & Machine Learning; University of Trento; Fondazione Bruno Kessler, 2019: 59–69.

[50]

Jiang Y, Wang F, Gao J, Liu W. Efficient BFCN for automatic retinal vessel segmentation. J Ophthalmol. 2020; 2020: 6439407.

[51]

Khan TM, Naqvi SS, Arsalan M, Khan MA, Khan HA, Haider A. Exploiting residual edge information in deep fully convolutional neural networks for retinal vessel segmentation. In: 2020 International Joint Conference on Neural Networks (IJCNN). IEEE; IEEE Computational Intelligence Society; International Neural Network Society; 2020.

[52]

Sathananthavathi V, Indumathi G, Ranjani AS. Parallel architecture of fully convolved neural network for retinal vessel segmentation. J Digit Imag. 2020; 33(1): 168-180.

[53]

Atli İ, Gedik OS. Sine-Net: a fully convolutional deep learning architecture for retinal blood vessel segmentation. Eng Sci Technol. 2021; 24(2): 271-283.

[54]

Samuel PM, Veeramalai T. VSSC Net: vessel specific skip chain convolutional network for blood vessel segmentation. Comput Methods Progr Biomed. 2021; 198: 105769.

[55]

Xu Y, Mao Z, Liu C, Wang B. Pulmonary vessel segmentation via stage-wise convolutional networks with orientation-based region growing optimization. IEEE Access. 2018; 6: 71296-71305.

[56]

Wang Y, Chen J, Liu C, Mao Z. Stacked fully convolutional networks for pulmonary vessel segmentation. In: 2018 IEEE Visual Communications and Image Processing (VCIP); 2018: 1-4.

[57]

Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. Lect Notes Comput Sci. 2015: 234-241. Accessed February 26, 2024. http://arxiv.org/abs/1505.04597

[58]

Li Q, Zhong S, Chen Z, et al. A high-speed end-to-end approach for retinal arteriovenous segmentation. In: Li Q, Wang L, Zhou M, Sun L, Qiu S, Liu H, eds. 2017 10th International Congress on Image and Signal Processing, Biomedical Engineering and Informatics (CISP-BMEI). IEEE Engineering in Medicine and Biology Society; AAi; 2017.

[59]

Gao X, Cai Y, Qiu C, Cui Y. Retinal blood vessel segmentation based on the Gaussian matched filter and U-Net. In: 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). 2017: 1-5.

[60]

Luo L, Chen D, Xue D. Retinal blood vessels semantic segmentation method based on modified U-Net. In: 2018 Chinese Control and Decision Conference (CCDC). 2018: 1892-1895.

[61]

Xu X, Tan T, Xu F. An improved U-Net architecture for simultaneous arteriole and venule segmentation in fundus image. In: Nixon M, Mahmoodi S, Zwiggelaar R, eds. Medical Image Understanding and Analysis. Springer International Publishing; 2018: 333-340.

[62]

Lopes AP, Ribeiro A, Silva CA. Dilated convolutions in retinal blood vessels segmentation. In: 2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG). 2019: 1-4.

[63]

Biswas R, Vasan A, Roy SS. Dilated deep neural network for segmentation of retinal blood vessels in fundus images. Iranian J Sci Technol Trans Electr Eng. 2020; 44(1): 505-518.

[64]

Lv Y, Ma H, Li J, Liu S. Attention guided U-Net with atrous convolution for accurate retinal vessels segmentation. IEEE Access. 2020; 8: 32826-32839.

[65]

Fu Q, Li S, Wang X. MSCNN-AM: a multi-scale convolutional neural network with attention mechanisms for retinal vessel segmentation. IEEE Access. 2020; 8: 163926-163936.

[66]

Chen C, Chuah JH, Ali R. Retinal vessel segmentation in fundus images using convolutional neural network. In: 2021 International Conference on High Performance Big Data and Intelligent Systems (HPBD&IS). 2021: 261-265.

[67]

Sun M, Li K, Qi X, Dang H, Zhang G. Contextual information enhanced convolutional neural networks for retinal vessel segmentation in color fundus images. J Vis Commun Image Represent. 2021; 77: 103134.

[68]

Wu J, Liu Y, Zhu Y, Li Z. Atrous residual convolutional neural network based on U-Net for retinal vessel segmentation. PLoS One. 2022; 17(8): 1-16.

[69]

Ouyang J, Liu S, Peng H, Garg H, Thanh DNH. LEA U-Net: a U-Net-based deep learning framework with local feature enhancement and attention for retinal vessel segmentation. Complex Intell Syst. 2023; 9(6): 6753-6766.

[70]

Soomro TA, Afifi AJ, Gao J, Hellwich O, Paul M, Zheng L. Strided U-Net model: retinal vessels segmentation using dice loss. In: 2018 Digital Image Computing: Techniques and Applications (DICTA); 2018: 1-8.

[71]

Soomro TA, Afifi AJ, Ali Shah A, et al. Impact of image enhancement technique on CNN model for retinal blood vessels segmentation. IEEE Access. 2019; 7: 158183-158197.

[72]

Sun K, Chen Y, Chao Y, Geng J, Chen Y. A retinal vessel segmentation method based improved U-Net model. Biomed Signal Process Control. 2023; 82: 104574.

[73]

Rong Y, Xiong Y, Li C, et al. Segmentation of retinal vessels in fundus images based on U-Net with self-calibrated convolutions and spatial attention modules. Med Biol Eng Comput. 2023; 61(7): 1745-1755.

[74]

Mostafiz T, Jarin I, Fattah SA, Shahnaz C. Retinal blood vessel segmentation using residual block incorporated U-Net architecture and fuzzy inference system. In: 2018 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE); 2018: 106-109.

[75]

Alom MZ, Hasan M, Yakopcic C, Taha TM, Asari VK. Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation. Computer Vision and Pattern Recognition abs/1802.06955. 2018.

[76]

Pan X, Zhang Q, Zhang H, Li S. A fundus retinal vessels segmentation scheme based on the improved deep learning U-Net model. IEEE Access. 2019; 7: 122634-122643.

[77]

Li D, Dharmawan DA, Ng BP, Rahardja S. Residual U-Net for retinal vessel segmentation. In: 2019 IEEE International Conference on Image Processing (ICIP). 2019: 1425-1429.

[78]

Ding H, Cui X, Chen L, Zhao K. MRU-NET: a U-shaped network for retinal vessel segmentation. Appl Sci. 2020; 10(19): 6823.

[79]

Adarsh R, Amarnageswarao G, Pandeeswari R, Deivalakshmi S. Dense residual convolutional auto encoder for retinal blood vessels segmentation. In: 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). 2020: 280-284.

[80]

Guo C, Szemenyei M, Yi Y, Xue Y, Zhou W, Li Y. Dense residual network for retinal vessel segmentation. In: ICASSP 2020 -2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); 2020: 1374-1378.

[81]

Wang N, Li K, Zhang G, Zhu Z, Wang P. Improvement of retinal vessel segmentation method based on U-Net. Electronics. 2023; 12(2): 262.

[82]

Wang C, Zhao Z, Ren Q, Xu Y, Yu Y. Dense U-net based on patch-based learning for retinal vessel segmentation. Entropy. 2019; 21(2): 168.

[83]

Luo Z, Zhang Y, Zhou L, Zhang B, Luo J, Wu H. Micro-vessel image segmentation based on the AD-UNet model. IEEE Access. 2019; 7: 143402-143411.

[84]

Cheng Y, Ma M, Zhang L, Jin C, Ma L, Zhou Y. Retinal blood vessel segmentation based on densely connected U-Net. Math Biosci Eng. 2020; 17(4): 3088-3108.

[85]

Mou L, Chen L, Cheng J, Gu Z, Zhao Y, Liu J. Dense dilated network with probability regularized walk for vessel detection. IEEE Trans Med Imag. 2020; 39(5): 1392-1403.

[86]

Zhang Y, Chung ACS. Deep supervision with additional labels for retinal vessel segmentation task. In: Frangi A, Schnabel J, Davatzikos C, AlberolaLopez C, Fichtinger G, eds. Medical Image Computing and Computer Assisted Intervention -MICCAI 2018, PT II. NVIDIA Inc; Siemens Healthineers GmbH; Guangzhou Shiyuan Elect Co Ltd; Subtle Med Inc; Arterys Inc; Claron Technol Inc; ImSight Inc; ImFusion GmbH; Medtron Plc; Depwise Inc; Carl Zeiss AG; Eurographics; Med Image Computing and Computer Assisted Intervention; 2018: 83-91.

[87]

Yin P, Yuan R, Cheng Y, Wu Q. Deep guidance network for biomedical image segmentation. IEEE Access. 2020; 8: 116106-116116.

[88]

Zhang Y, Fang J, Chen Y, Jia L. Edge-aware U-net with gated convolution for retinal vessel segmentation. Biomed Signal Process Control. 2022; 73: 103472.

[89]

Tang X, Zhong B, Peng J, Hao B, Li J. Multi-scale channel importance sorting and spatial attention mechanism for retinal vessels segmentation. Appl Soft Comput. 2020; 93: 106353.

[90]

Wang D, Haytham A, Pottenburgh J, Saeedi O, Tao Y. Hard attention net for automatic retinal vessel segmentation. IEEE J Biomed Health Inf. 2020; 24(12): 3384-3396.

[91]

Li W, Zhang M, Chen D. Fundus retinal blood vessel segmentation based on active learning. In: 2020 International Conference on Computer Information and Big Data Applications (CIBDA); 2020: 264-268.

[92]

Wang B, Wang S, Qiu S, Wei W, Wang H, He H. CSU-Net: a context spatial U-Net for accurate blood vessel segmentation in fundus images. IEEE J Biomed Health Inf. 2021; 25(4): 1128-1138.

[93]

Wu H, Wang W, Zhong J, Lei B, Wen Z, Qin J. SCS-Net: a scale and context sensitive network for retinal vessel segmentation. Med Image Anal. 2021; 70: 102025.

[94]

Dong F, Wu D, Guo C, Zhang S, Yang B, Gong X. CRAUNet: a cascaded residual attention U-Net for retinal vessel segmentation. Comput Biol Med. 2022; 147: 105651.

[95]

Wang D, Hu G, Lyu C. FRNet: an end-to-end feature refinement neural network for medical image segmentation. Vis Comput. 2021; 37(5): 1101-1112.

[96]

Li K, Qi X, Luo Y, Yao Z, Zhou X, Sun M. Accurate retinal vessel segmentation in color fundus images via fully attention-based networks. IEEE J Biomed Health Inf. 2021; 25(6): 2071-2081.

[97]

Islam MT, Khan HA, Naveed K, Nauman A, Gulfam SM, Kim SW. LUVS-Net: a lightweight U-Net vessel segmentor for retinal vasculature detection in fundus images. Electronics. 2023; 12(8): 1786.

[98]

Sanches P, Meyer C, Vigon V, Naegel B. Cerebrovascular network segmentation on MRA images with deep learning. 2018. Accessed October 25, 2023. http://arxiv.org/abs/1812.01752

[99]

Livne M, Rieger J, Aydin OU, et al. A U-Net deep learning framework for high performance vessel segmentation in patients with cerebrovascular disease. Front Neurosci. 2019; 13.

[100]

Quon JL, Chen LC, Kim L, et al. Deep learning for automated delineation of pediatric cerebral arteries on pre-operative brain magnetic resonance imaging. Front Surg. 2020; 7.

[101]

Hadji SE, Moccia S, Scorza D, et al. Brain-vascular segmentation for SEEG planning via a 3D fully-convolutional neural network. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2019: 1014-1017.

[102]

Fan S, Bian Y, Chen H, Kang Y, Yang Q, Tan T. Unsupervised cerebrovascular segmentation of TOF-MRA images based on deep neural network and hidden Markov random field model. Front Neuroinf. 2020; 13: 77.

[103]

Chao Z, Xu W. A new general maximum intensity projection technology via the hybrid of U-Net and radial basis function neural network. J Digit Imag. 2021; 34(5): 1264-1278.

[104]

Wang Y, Yan G, Zhu H, et al. JointVesselNet: joint volume-projection convolutional embedding networks for 3D cerebrovascular segmentation. In: Martel AL, Abolmaesumi P, Stoyanov D, et al, eds. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. Springer International Publishing; 2020: 106-116.

[105]

Liu Y, Kwak H-S, Oh I-S. Cerebrovascular segmentation model based on spatial attention-guided 3D inception U-Net with multi-directional MIPs. Appl Sci. 2022; 12(5): 2288.

[106]

Hilbert A, Madai VI, Akay EM, et al. BRAVE-NET: fully automated arterial brain vessel segmentation in patients with cerebrovascular disease. Front Artif Intell. 2020; 3: 552258.

[107]

Fu F, Wei J, Zhang M, et al. Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network. Nat Commun. 2020; 11(1): 4829.

[108]

Huang D, Yin L, Guo H, Tang W, Wan TR. FAU-Net: fixup initialization channel attention neural network for complex blood vessel segmentation. Appl Sci. 2020; 10(18): 6280.

[109]

Guo X, Xiao R, Lu Y, et al. Cerebrovascular segmentation from TOF-MRA based on multiple-U-net with focal loss function. Comput Methods Progr Biomed. 2021; 202: 105998.

[110]

Chen Y, Fan S, Chen Y, et al. Vessel segmentation from volumetric images: a multi-scale double-pathway network with class-balanced loss at the voxel level. Med Phys. 2021; 48(7): 3804-3814.

[111]

Lee K, Sunwoo L, Kim T, Lee KJ. Spider U-Net: incorporating inter-slice connectivity using LSTM for 3D blood vessel segmentation. Appl Sci. 2021; 11(5): 2014.

[112]

Min Y, Nie S. Automatic segmentation of cerebrovascular based on deep learning. In: 2021 3rd International Conference on Artificial Intelligence and Advanced Manufacture. Association for Computing Machinery; 2022: 94-98.

[113]

Zhang M, Zhang C, Wu X, et al. A neural network approach to segment brain blood vessels in digital subtraction angiography. Comput Methods Progr Biomed. 2020; 185: 105159.

[114]

Lin F, Xia Y, Song S, Ravikumar N, Frangi AF. High-throughput 3DRA segmentation of brain vasculature and aneurysms using deep learning. Comput Methods Progr Biomed. 2023; 230: 107355.

[115]

Cui H, Liu X, Huang N. Pulmonary vessel segmentation based on orthogonal fused U-Net++ of chest CT images. In: Shen D, Liu T, Peters TM, et al., eds. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. Springer International Publishing; 2019: 293-300.

[116]

Xu S, Zhang Z, Zhou Q, Shao W, Tan W. A pulmonary vascular extraction algorithm from chest CT/CTA images. J Healthcare Eng. 2021; 2021: 5763177.

[117]

Wu R, Xin Y, Qian J, Dong Y. A multi-scale interactive U-Net for pulmonary vessel segmentation method based on transfer learning. Biomed Signal Process Control. 2023; 80: 104407.

[118]

Azad R, Asadi-Aghbolaghi M. Fathy M, Escalera S. Bi-Directional ConvLSTM U-Net with Densley Connected Convolutions. IEEE; 2019: 406-415.

[119]

Zhou Q, Zhao R, Hu Y, Wang J, Zhou R. Hierarchical hybrid networks for automatic pulmonary blood vessel segmentation in computed tomography images. IEEE ACM Trans Comput Biol Bioinf. 2023; 21(4): 1-12.

[120]

Zulfiqar M, Stanuch M, Wodzinski M, Skalski A. DRU-Net: pulmonary artery segmentation via dense residual U-network with hybrid loss function. Sensors. 2023; 23(12): 5427.

[121]

Wu R, Xin Y, Dong Y, Qian J. A dual-path U-Net for pulmonary vessel segmentation method based on lightweight 3D attention. Mach Vis Appl. 2023; 34(5): 87.

[122]

Goodfellow I, Pouget-Abadie J. Mirza M, et al. Generative adversarial nets. Mach Learn. n.d.

[123]

Iqbal A, Sharif M, Yasmin M, Raza M, Aftab S. Generative adversarial networks and its applications in the biomedical image segmentation: a comprehensive survey. Int J Multimed Inf Retr. 2022; 11(3): 333-368.

[124]

Rammy SA, Anwar SJ, Abrar M, Zhang W. Conditional patch-based generative adversarial network for retinal vessel segmentation. In: 2019 22nd International Multitopic Conference (INMIC); 2019: 1-6.

[125]

Yang T, Wu T, Li L, Zhu C. SUD-GAN: deep convolution generative adversarial network combined with short connection and dense block for retinal vessel segmentation. J Digit Imag. 2020; 33(4): 946-957.

[126]

Ma J, Wei M, Ma Z, Shi L, Zhu K. Retinal vessel segmentation based on generative adversarial network and dilated convolution. In: 2019 14th International Conference on Computer Science & Education (ICCSE); 2019: 282-287.

[127]

Wu C, Zou Y, Yang Z. U-GAN: generative adversarial networks with U-Net for retinal vessel segmentation. In: 2019 14th International Conference on Computer Science & Education (ICCSE); 2019: 642-646.

[128]

Zhao J, Feng Q. Deep Att-ResGAN: a retinal vessel segmentation network for color fundus images. Trait Du Signal. 2021; 38(5): 1309-1317.

[129]

Zhou Y, Chen Z, Shen H, Zheng X, Zhao R, Duan X. A refined equilibrium generative adversarial network for retinal vessel segmentation. Neurocomputing. 2021; 437: 118-130.

[130]

Kar MK, Neog DR, Nath MK. Retinal vessel segmentation using multi-scale residual convolutional neural network (MSR-Net) combined with generative adversarial networks. Circ Syst Signal Process. 2023; 42(2): 1206-1235.

[131]

Yang M, Ye Y, Ye K, Zhou W, Hu X, Hu B. Retinal vessel segmentation in medical diagnosis using multi-scale attention generative adversarial networks. Mobile Network Appl. 2023; 28(4): 1391-1401.

[132]

Khan TM, Naqvi SS, Robles-Kelly A. Razzak I. Retinal vessel segmentation via a multi-resolution contextual network and adversarial learning. Neural Network. 2023; 165: 310-320.

[133]

Tu W, Hu W, Liu X, He J. DRPAN: a novel adversarial network approach for retinal vessel segmentation. In: 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA); 2019: 228-232.

[134]

Dong Y, Ren W, Zhang K. Deep supervision adversarial learning network for retinal vessel segmentation. In: 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI); 2019: 1-6.

[135]

Park K-B, Choi SH, Lee JY. M-GAN: retinal blood vessel segmentation by balancing losses through stacked deep fully convolutional networks. IEEE Access. 2020; 8: 146308-146322.

[136]

Yue C, Ye M, Wang P, Huang D, Lu X. SRV-GAN: a generative adversarial network for segmenting retinal vessels. Math Biosci Eng. 2022; 19(10): 9948-9965.

[137]

Zhang J, Yang K, Shen Z, et al. End-to-end automatic classification of retinal vessel based on generative adversarial networks with improved U-Net. Diagnostics. 2023; 13(6): 1148.

[138]

Guo X, Chen C, Lu Y, et al. Retinal vessel segmentation combined with generative adversarial networks and dense U-Net. IEEE Access. 2020; 8: 194551-194560.

[139]

Chen Z, Jin W, Zeng X, Xu L. Retinal vessel segmentation based on task-driven generative adversarial network. IET Image Process. 2020; 14(17): 4599-4605.

[140]

Alimanov A, Islam MB. Retinal image restoration and vessel segmentation using modified cycle-CBAM and CBAM-UNet. In: 2022 Innovations in Intelligent Systems and Applications Conference (ASYU); 2022: 1-6.

[141]

Huo Q, Tang G, Zhang F. Particle swarm optimization for great enhancement in semi-supervised retinal vessel segmentation with generative adversarial networks. In: Liao H, Balocco S, Wang G, et al., eds. Machine Learning and Medical Engineering for Cardiovascular Health and Intravascular Imaging and Computer Assisted Stenting. Springer International Publishing; 2019: 112-120.

[142]

Lahiri A, Jain V, Mondal A, Biswas PK. Retinal vessel segmentation under extreme low annotation: a gan based semi-supervised approach. In: 2020 IEEE International Conference on Image Processing (ICIP); 2020: 418-422.

[143]

Ma Y, Hua Y, Deng H, et al. Self-supervised vessel segmentation via adversarial learning. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV); 2021: 7516-7525.

[144]

Chen Y, Ye M, Wang P, Huang D, Lu X. Generative adversarial network combined with SE-ResNet and dilated inception block for segmenting retinal vessels. Comput Intell Neurosci. 2022; 2022: 1-13.

[145]

Liu X, Zhang D, Yao J, Tang J. Transformer and convolutional based dual branch network for retinal vessel segmentation in OCTA images. Biomed Signal Process Control. 2023; 83: 104604.

[146]

Kossen T, Subramaniam P, Madai VI, et al. Synthesizing anonymized and labeled TOF-MRA patches for brain vessel segmentation using generative adversarial networks. Comput Biol Med. 2021; 131: 104254.

[147]

Subramaniam P, Kossen T, Ritter K, et al. Generating 3D TOF-MRA volumes and segmentation labels using generative adversarial networks. Med Image Anal. 2022; 78: 102396.

[148]

Quintana-Quintana OJ, De León-Cuevas A, González-Gutiérrez A, Gorrostieta-Hurtado E. Tovar-Arriaga S. Dual U-Net-based conditional generative adversarial network for blood vessel segmentation with reduced cerebral MR training volumes. Micromachines. 2022; 13(6): 823.

[149]

Chen Y, Jin D, Guo B, Bai X. Attention-assisted adversarial model for cerebrovascular segmentation in 3D TOF-MRA volumes. IEEE Trans Med Imag. 2022; 41(12): 3520-3532.

[150]

Amran D, Artzi M, Aizenstein O, Ben Bashat D, Bermano AH. BV-GAN: 3D time-of-flight magnetic resonance angiography cerebrovascular vessel segmentation using adversarial CNNs. J Med Imag. 2022; 9(04): 044503.

[151]

Chen Z, Xie L, Chen Y, et al. Generative adversarial network based cerebrovascular segmentation for time-of-flight magnetic resonance angiography image. Neurocomputing. 2022; 488: 657-668.

[152]

Chen C, Zhou K, Lu T, Ning H, Xiao R. Integration-and separation-aware adversarial model for cerebrovascular segmentation from TOF-MRA. Comput Methods Progr Biomed. 2023; 233: 107475.

[153]

Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. In: Guyon I, Luxburg U, Bengio S, et al., eds. Advances in Neural Information Processing Systems 30 (NIPS 2017); 2017.

[154]

Li Y, Miao N, Ma L, Shuang F, Huang X. Transformer for object detection: review and benchmark. Eng Appl Artif Intell. 2023; 126: 107021.

[155]

Li J, Ye J, Zhang R, et al. CPFTransformer: transformer fusion context pyramid medical image segmentation network. Front Neurosci. 2023; 17.

[156]

Zhang H, Zhong X, Li Z, et al. TiM-Net: transformer in M-Net for retinal vessel segmentation. J Healthcare Eng. 2022; 2022: 9016401.

[157]

Huang X, Deng Z, Li D, Yuan X, Fu Y. MISSFormer: an effective transformer for 2D medical image segmentation. IEEE Trans Med Imag. 2023; 42(5): 1484-1494.

[158]

Wang C, Xu R, Xu S, Meng W, Zhang X. DA-Net: dual branch transformer and adaptive strip upsampling for retinal vessels segmentation. In: Wang L, Dou Q, Fletcher PT, Speidel S, Li S, eds. Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. Springer Nature Switzerland; 2022: 528-538.

[159]

Li Y, Zhang Y, Liu J-Y, et al. Global transformer and dual local attention network via deep-shallow hierarchical feature fusion for retinal vessel segmentation. IEEE Trans Cybern. 2023; 53(9): 5826-5839.

[160]

Tan X, Chen X, Meng Q, et al. OCT2Former: a retinal OCT-angiography vessel segmentation transformer. Comput Methods Progr Biomed. 2023; 233: 107454.

[161]

Zhang H, Ni W, Luo Y, Feng Y, Song R, Wang X. TUnet-LBF: retinal fundus image fine segmentation model based on transformer Unet network and LBF. Comput Biol Med. 2023; 159: 106937.

[162]

Lin J, Huang X, Zhou H, Wang Y, Zhang Q. Stimulus-guided adaptive transformer network for retinal blood vessel segmentation in fundus images. Med Image Anal. 2023; 89: 102929.

[163]

Hatamizadeh A, Tang Y, Nath V, et al. UNETR: transformers for 3D medical image segmentation. In: 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2022: 1748-1758.

[164]

Chen C, Zhou K, Wang Z, Xiao R. Generative consistency for semi-supervised cerebrovascular segmentation from TOF-MRA. IEEE Trans Med Imag. 2023; 42(2): 346-353.

[165]

Li Y, Zhang Q, Zhou H, Li J, Li X, Li A. Cerebrovascular segmentation from mesoscopic optical images using Swin Transformer. J Innovat Opt Health Sci. 2023; 16(04): 2350009.

[166]

Wu Y, Qi S, Wang M, et al. Transformer-based 3D U-Net for pulmonary vessel segmentation and artery-vein separation from CT images. Med Biol Eng Comput. 2023; 61(10): 2649-2663.

[167]

Shin SY, Lee S, Yun ID, Lee KM. Deep vessel segmentation by learning graphical connectivity. Med Image Anal. 2019; 58: 101556.

[168]

Li Y, Zhang Y, Cui W, Lei B, Kuang X, Zhang T. Dual encoder-based dynamic-channel graph convolutional network with edge enhancement for retinal vessel segmentation. IEEE Trans Med Imag. 2022; 41(8): 1975-1989.

[169]

Shi C, Xu C, He J, et al. Graph-based convolution feature aggregation for retinal vessel segmentation. Simulat Model Pract Theor. 2022; 121: 102653.

[170]

Tian H, Li L, Song F. Study on the deformations of the lamina cribrosa during glaucoma. Acta Biomater. 2017; 55: 340-348.

[171]

Ekici E, Moghimi S. Advances in understanding glaucoma pathogenesis: a multifaceted molecular approach for clinician scientists. Mol Aspect Med. 2023; 94: 101223.

[172]

Chen X, Xu Y, Yan S, Wong DWK, Wong TY, Liu J. Automatic feature learning for glaucoma detection based on deep learning. In: Navab N, Hornegger J, Wells WM, Frangi AF, eds. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Springer International Publishing; 2015: 669-677.

[173]

Orlando JI, Prokofyeva E, del Fresno M, Blaschko MB. Convolutional neural network transfer for automated glaucoma identification. In: Romero E, Lepore N, Brieva J, Larrabide I, eds. 12th International Symposium on Medical Information Processing and Analysis. SPIE; 2017:101600U.

[174]

Chai Y, He L, Mei Q, Liu H, Xu L. Deep learning through two-branch convolutional neuron network for glaucoma diagnosis. In: Chen H, Zeng DD, Karahanna E, Bardhan I, eds. Smart Health. Springer International Publishing; 2017: 191-201.

[175]

Raghavendra U, Fujita H, Bhandary SV, Gudigar A, Tan JH, Acharya UR. Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images. Inf Sci. 2018; 441: 41-49.

[176]

Serte S, Serener A. Graph-based saliency and ensembles of convolutional neural networks for glaucoma detection. IET Image Process. 2021; 15(3): 797-804.

[177]

Sujithra BS, Albert Jerome S. Adaptive cluster-based superpixel segmentation and BMWMMBO-based DCNN classification for glaucoma detection. Signal Image Video Process. 2023; 18(1): 465-474.

[178]

Jain A, Bhatnagar V, Rao ACS, Khari M. Retina disease prediction using modified convolutional neural network based on Inception-ResNet model with support vector machine classifier. Comput Intell. 2023; 39(6): 1088-1111.

[179]

AbdelMaksoud E, Barakat S, Elmogy M. A computer-aided diagnosis system for detecting various diabetic retinopathy grades based on a hybrid deep learning technique. Med Biol Eng Comput. 2022; 60(7): 2015-2038.

[180]

Li X, Hu X, Yu L, Zhu L, Fu C-W, Heng P-A. CANet: cross-disease attention network for joint diabetic retinopathy and diabetic macular edema grading. IEEE Trans Med Imag. 2020; 39(5): 1483-1493.

[181]

Sangeethaa SN, Uma Maheswari P. An intelligent model for blood vessel segmentation in diagnosing DR using CNN. J Med Syst. 2018; 42(10): 175.

[182]

Kumaran G, Chelliah BJ, Arun Kumar S. VESDNet: deep vessel segmentation (U) network for the early diagnosis of diabetic retinopathy. In: Kannan RJ, Geetha S, Sashikumar S, Diver C, eds. International Virtual Conference on Industry 4.0. Springer Singapore; 2021: 375-385.

[183]

Agarwal V, Sipani R, Saranya P. Abnormal blood vessels segmentation for proliferative diabetic retinopathy screening using convolutional neural network. In: Singh M, Tyagi V, Gupta PK, Flusser J, Ören T, Sonawane VR, eds. Advances in Computing and Data Sciences. Springer International Publishing; 2021: 162-170.

[184]

Liu R, Gao S, Zhang H, Wang S, Zhou L, Liu J. MTNet: a combined diagnosis algorithm of vessel segmentation and diabetic retinopathy for retinal images. PLoS One. 2022; 17(11): 1-17.

[185]

Xu K, Feng D, Mi H. Deep convolutional neural network-based early automated detection of diabetic retinopathy using fundus image. Molecules. 2017; 22(12): 2054.

[186]

Khanna M, Singh LK, Thawkar S, Goyal M. Deep learning based computer-aided automatic prediction and grading system for diabetic retinopathy. Multimed Tool Appl. 2023; 82(25): 39255-39302.

[187]

Liu X, Ali TK, Singh P, et al. Deep learning to detect OCT-derived diabetic macular edema from color retinal photographs: a multicenter validation study. Ophthalmol Retina. 2022; 6(5): 398-410.

[188]

Rahim SS, Palade V, Almakky I, Holzinger A. Detection of diabetic retinopathy and maculopathy in eye fundus images using deep learning and image augmentation. In: Holzinger A, Kieseberg P, Tjoa AM, Weippl E, eds. Machine Learning and Knowledge Extraction. Springer International Publishing; 2019: 114-127.

[189]

Sahlsten J, Jaskari J, Kivinen J, et al. Deep learning fundus image analysis for diabetic retinopathy and macular edema grading. Sci Rep. 2019; 9(1): 10750.

[190]

Padmasini N, Umamaheswari R. Automated detection of multiple structural changes of diabetic macular oedema in SDOCT retinal images through transfer learning in CNNs. IET Image Process. 2020; 14(16): 4067-4075.

[191]

Guo X, Lu X, Zhang B, Hu X, Che S. Automatic detection and grading of diabetic macular edema based on a deep neural network. Retina. 2022; 42(6): 1095-1102.

[192]

Atteia G, Abdel Samee N, El-Kenawy E-SM, Ibrahim A. CNN-hyperparameter optimization for diabetic maculopathy diagnosis in optical coherence tomography and fundus retinography. Mathematics. 2022; 10(18): 3274.

[193]

Deshpande A, Jamilpour N, Jiang B, et al. Automatic segmentation, feature extraction and comparison of healthy and stroke cerebral vasculature. Neuroimage Clin. 2021; 30: 102573.

[194]

Yalçın S, Vural H. Brain stroke classification and segmentation using encoder-decoder based deep convolutional neural networks. Comput Biol Med. 2022; 149: 105941.

[195]

Hamer NAJ. Cor pulmonale from repeated pulmonary embolism. Postgrad Med. 1958; 34(387): 19-23.

[196]

Becattini C, Agnelli G. Acute pulmonary embolism: mortality prediction by the 2014 European Society of Cardiology risk stratification model. Eur Respir J. 2017; 49(1): 1601732.

[197]

Blackmon KN, Florin C, Bogoni L, et al. Computer-aided detection of pulmonary embolism at CT pulmonary angiography: can it improve performance of inexperienced readers? Eur Radiol. 2011; 21(6): 1214-1223.

[198]

Yang X, Lin Y, Su J, et al. A two-stage convolutional neural network for pulmonary embolism detection from CTPA images. IEEE Access. 2019; 7: 84849-84857.

[199]

Huang S-C, Kothari T, Banerjee I, et al. PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging. NPJ Digit Med. 2020; 3(1): 61.

[200]

Liu W, Liu M, Guo X, et al. Evaluation of acute pulmonary embolism and clot burden on CTPA with deep learning. Eur Radiol. 2020; 30(6): 3567-3575.

[201]

Steffes LC, Froistad AA, Andruska A, et al. A Notch3-marked subpopulation of vascular smooth muscle cells is the cell of origin for occlusive pulmonary vascular lesions. Circulation. 2020; 142(16): 1545-1561.

[202]

Wang M, Wang J, Hu Y, Guo B, Tang H. Detection of pulmonary hypertension with six training strategies based on deep learning technology. Comput Intell. 2022; 38(5): 1684-1706.

[203]

Diller G-P, Benesch Vidal ML, Kempny A, et al. A framework of deep learning networks provides expert-level accuracy for the detection and prognostication of pulmonary arterial hypertension. Eur Heart J Cardiovasc Imaging. 2022; 23(11): 1447-1456.

[204]

Stéphanou A, Lesart AC, Deverchère J, Juhem A, Popov A, Estève F. How tumour-induced vascular changes alter angiogenesis: insights from a computational model. J Theor Biol. 2017; 419: 211-226.

[205]

Hu Y, Song J, Feng A, et al. Recent advances in nanotechnology-based targeted delivery systems of active constituents in natural medicines for cancer treatment. Molecules. 2023; 28(23): 7767.

[206]

Shan S, Chen J, Sun Y, et al. Functionalized macrophage exosomes with panobinostat and PPM1D-siRNA for diffuse intrinsic pontine gliomas therapy. Adv Sci. 2022; 9(21): 2200353.

[207]

Zhao W, He H, Zhao J, Sun J. Adrenal tumor vessels segmentation using convolutional neural network in computed tomography angiography. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2019: 1006-1009.

[208]

Kostrikov S, Johnsen KB, Braunstein TH, et al. Optical tissue clearing and machine learning can precisely characterize extravasation and blood vessel architecture in brain tumors. Commun Biol. 2021; 4(1): 815.

[209]

Zhu M, Zhuang J, Li Z, et al. Machine-learning-assisted single-vessel analysis of nanoparticle permeability in tumour vasculatures. Nat Nanotechnol. 2023; 18(6): 657-666.

[210]

Kumar Y, Gupta B. Retinal image blood vessel classification using hybrid deep learning in cataract diseased fundus images. Biomed Signal Process Control. 2023; 84: 104776.

RIGHTS & PERMISSIONS

2024 The Author(s). Journal of Intelligent Medicine published by John Wiley & Sons Australia, Ltd on behalf of Tianjin University.

AI Summary AI Mindmap
PDF

673

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/