2025-04-20 2025, Volume 7 Issue 4

  • Select all
  • RESEARCH ARTICLE
    Liang Zhao , Congcong Xin , Chengchao Yu , Yunpeng Xing , Zefeng Wei , Hongda Zhang , Teng Fei , Sen Liu , Haiyan Zhang , Tong Zhang

    The modulation of the electronic structure of metal oxides is crucial to enhance their gas-sensing performance. However, there is lacking in profound study on the effect of electronic structure regulation on sensing performance. Herein, we propose an innovative strategy of Jahn–Teller distortion-induced electronic configuration regulation of Co3O4 to improve acetone sensing performance. After the introduction of Mn3+ into Co3O4 (Mn-Co3O4), the Jahn–Teller distortion of high-spin Mn3+ (t2g3eg1) conversed to low-spin Mn4+ (t2g3eg0), resulting in conversion of Co3+ (t2g6eg0) into Co2+ (t2g6eg1). As expected, Mn-Co3O4 exhibits a high response value of 46.7 toward 100 ppm acetone, low limit of detection of 0.75 ppb, high selectivity, and high stability, which are overwhelmingly superior to previous Co3O4-based acetone sensors. The dynamics and thermodynamics analysis demonstrate that the Mn doping improves sensing reaction rate, reduces reaction barrier, and promotes the charge transfer. The theoretical calculations further prove the charge transfer from Mn to Co derived from Jahn–Teller distortion and support promoting the adsorption of acetone on Co3O4 by Mn dopant. Moreover, we demonstrated the substantial potential application of Mn-Co3O4 sensor as a monitoring gas sensor in pest resistance of Arabidopsis. This work provides a new strategy to design sensing materials from electronic configuration perspective.

  • RESEARCH ARTICLE
    Caise Wei , Shiqiang Liu , Jinfeng Yuan , Rong Zhu

    Wearable sign language recognition helps hearing/speech impaired people communicate with non-signers. However current technologies still unsatisfy practical uses due to the limitations of sensing and decoding capabilities. Here, A continuous sign language recognition system is proposed with multimodal hand/finger movement sensing and fuzzy encoding, trained with small word-level samples from one user, but applicable to sentence-level language recognition for new untrained users, achieving data-efficient universal recognition. A stretchable fabric strain sensor is developed by printing conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) ink on a pre-stretched fabric wrapping rubber band, allowing the strain sensor with superior performances of wide sensing range, high sensitivity, good linearity, fast dynamic response, low hysteresis, and good long-term reliability. A flexible e-skin with a homemade micro-flow sensor array is further developed to accurately capture three-dimensional hand movements. Benefitting from fabric strain sensors for finger movement sensing, micro-flow sensor array for 3D hand movement sensing, and human-inspired fuzzy encoding for semantic comprehension, sign language is captured accurately without the interferences from individual action differences. Experiment results show that the semantic comprehension accuracy reaches 99.7% and 95%, respectively, in recognizing 100 isolated words and 50 sentences for a trained user, and achieves 80% in recognizing 50 sentences for new untrained users.

  • RESEARCH ARTICLE
    Chunyang Xu , Xuhui Xiong , Yiqian Du , Xiaowei Lv , Zhengchen Wu , Kaicheng Luo , Yuetong Qian , Renchao Che

    The simultaneous enhancement of magnetic and dielectric properties in nanomaterials is becoming increasingly important for achieving exceptional microwave absorption performance. However, the engineering strategies for modulating electromagnetic responses remain challenging, and the underlying magnetic-dielectric loss mechanisms are not yet fully understood. In this study, we constructed novel dual-coupling networks through the tightly packed Fe3O4@C spindles, which exhibit both dielectric and magnetic dissipation effects. During the spray-drying process, vigorous self-assembly facilitated the formation of hierarchical microspheres composed of nanoscale core-shell ferromagnetic units. Numerous heterogeneous interfaces and abundant magnetic domains were produced in these microspheres. The integrated dielectric/magnetic coupling networks, formed by discontinuous carbon layers and closely arranged Fe3O4 spindles, contribute to strong absorption through intense interfacial polarization and magnetic interactions. The mechanisms behind both magnetic and dielectric losses are elucidated through Lorentz electron holography and micromagnetic simulations. Consequently, the hierarchical microspheres demonstrate excellent low-frequency absorption performance, achieving an effective absorption bandwidth of 3.52 GHz, covering the entire C-band from 4 to 8 GHz. This study reveals that dual-coupling networks engineering is an effective strategy for synergistically enhancing electromagnetic responses and improving the absorption performance of magnetic nanomaterials.

  • RESEARCH ARTICLE
    Boming Yang , Xiao Ouyang , Xue Zhao , Jie Su , Yang Li , Siyu Zhang , Xiaoping Ouyang

    Nuclear radiation detectors are critical to transient nuclear reaction imaging, medical diagnostic imaging, security checks, industry inspection, and so forth, with many potential uses limited by scintillator dimensions. Current scintillator crystals are limited by the long-standing issues of hetero-crystalline formation and consequently inferior crystal dimensions and quality. Particularly, the hybrid organic–inorganic perovskites (HOIPs) exhibit scintillation capability under X-ray and fast neutrons within a single framework, owing to the presence of heavy elements and high hydrogen density groups, respectively. However, the achievement of high-performance and large-area imaging by HOIPs scintillators is impeded by the crystal growth technology. Herein, we propose an optimal crystal growth strategy and obtain an inch-sized high-quality (PEA)2PbBr4 single crystals (SCs) with a record dimension of 4.60 cm × 3.80 cm × 0.19 cm. Their application as synergistic scintillators in high-energy rays and charged particles detection are investigated, which exhibit high light yield (38 600 photons MeV–1) and ultra-fast decay times that are 4.89, 27.98, and 3.84 ns under the 375-nm laser, γ-ray, and α particles, respectively. Moreover, the (PEA)2PbBr4 SCs demonstrate a remarkably high spatial resolution of 23.2 lp mm–1 (at MTF = 20%) for X-ray and 2.00 lp mm–1 for fast neutrons, surpassing the reported perovskites scintillators.

  • RESEARCH ARTICLE
    Jiabing Liu , Xinyu Zhang , Hongyang Li , Shufeng Jia , Jianhui Li , Qiang Li , Yongguang Zhang , Gaoran Li

    The practical application of lithium-sulfur (Li-S) batteries is seriously impeded by the notorious shuttle effect and sluggish reaction kinetics. Herein, we develop an advanced sulfur electrocatalyst that integrates single-atom Co-N4 moieties with Co nanoclusters on N-rich hollow carbon nanospheres (Co-ACSA@NC). The proximity of single atoms and nanoclusters establishes a synergistic “pincer” interaction with polysulfides through dual modes of coordinate and chemical bonding. Moreover, electron donation from the Co nanocluster enhances the bonding between polysulfide and Co-N4, further improving the immobilization and catalytic conversion of sulfur species. The hollow and porous carbon support not only exposes the abundant active sites efficiently, but also serves as a confined nanoreactor for well-tamed sulfur reactions. As a result, the S/Co-ACSA@NC cathode exhibits excellent cyclability over 500 cycles with minimal attenuation of 0.018% per cycle. A high areal capacity of 11.15 mAh cm–2 can be obtained even under high sulfur loading (13.1 mg cm–2) and lean electrolyte (E/S = 4.0 μL mg–1), while a 2.38-Ah pouch cell is also demonstrated with a commendable energy density over 307.7 Wh kg–1. This work offers a unique “pincer” catalysis strategy for boosting sulfur electrochemistry, paving the way to high-performance and practically viable Li-S batteries.

  • REVIEW ARTICLE
    Huaihu Sun , Hongliu Dai , Gaixia Zhang , Shuhui Sun

    Currently, conventional organic liquid electrolytes (OLEs) are the main limiting factor for the next generation of high-energy lithium batteries. There is growing interest in inorganic solid-state electrolytes (ISEs). However, ISEs still face various challenges in practical applications, particularly at the interface between ISE and the electrode, which significantly affects the performance of solid-state batteries (SSBs). In recent decades, atomic and molecular layer deposition (ALD and MLD) techniques, widely used to manipulate interface properties and construct novel electrode structures, have emerged as promising strategies to address the interface challenges faced by ISEs. This review focuses on the latest developments and applications of ALD/MLD technology in SSBs, including interface modification of cathodes and lithium metal anodes. From the perspective of interface strategy mechanism, we present experimental progress and computational simulations related to interface chemistry and electrochemical stability in thermodynamic contents. In addition, this article explores the future direction and prospects for ALD/MLD in dynamic stability engineering of interfaces SSBs.

  • RESEARCH ARTICLE
    Chenglong Li , Jianping Zhou , Hengyi Dai , Meng Li , Dongdong Zhang , Lian Duan

    Multiresonance organoboron helicenes are promising narrowband circularly polarized luminescence (CPL) emitters, which, however, still face formidable challenges to balance a large luminescence dissymmetry factor (glum) and a high luminescence efficiency. Here, two pairs of organoboron enantiomers (P/M-BN[8]H-ICz and P/M-BN[8]H-BO) with the same hetero[8]helicene geometric structures are developed through polycyclization decoration. We find that it is the helicity of helicene electronic structures rather than the geometrical one that determines the molecular dissymmetry property as a larger electronic helicity could enhance the electron-orbital coupling of the helicene structure. Therefore, P/M-BN[8]H-BO who possesses a hetero[8]helicene electronic structure realizes a nearly one-order-of-magnitude higher glum (+2.75/−2.52 × 10–3) and a higher photoluminescence quantum yield (PLQY) of 99% compared with P/M-BN[8]H-ICz bearing only a hetero[6]helicene electronic distribution structure (glum of only +2.41/−2.37 ×  10–4 and PLQY of 95%). Moreover, BN[8]H-BO exhibits a narrowband green emission peaking at 538 nm with a full-width at half-maxima of merely 34 nm, narrower than most multiresonance CPL helicenes. The corresponding organic light-emitting diodes simultaneously realize a high external quantum efficiency of 31.7%, an electroluminescence dissymmetry factors (gEL) of +5.23/−5.07 × 10–3, and an extremely long LT95 (time to 95% of the initial luminance) of over 731 h at an initial luminance of 1000 cd m–2.

  • RESEARCH ARTICLE
    Yang Fei , Qiuxiang Wang , Feng Wang , Guozheng Zhang , Min Hu , Tianpeng Ding , Tao Zhao , Xu Xiao

    Ultrathin terahertz (THz) absorbing films are critical as building blocks for THz devices and systems. Although few-layer Ti3C2Tx MXene assemblies have approached the terahertz (THz) intrinsic absorption limit, it remains important to explore the THz intrinsic absorbing properties of other MXenes, which may elucidate the mechanism of THz-matter interactions for the future guidance of material design. In this study, eight representative MXenes with different M-sites were systematically analyzed. Surprisingly, the Ti2CTx thin film with direct current (DC) conductivity 26 times lower than that of the Ti3C2Tx film possessed similar high THz absorbing properties. Due to the significantly lower electron concentration of Ti2CTx compared to that of Ti3C2Tx, we concluded that the exceptional THz intrinsic absorption of Ti2CTx stemmed from its high terahertz electron mobility (μTHz), which was attributed to its low electron effective mass (m*). Because the THz intrinsic absorption was determined by THz conductivity, which was proportional to the ratio of electron density (n) to electron effective mass (m*), we proposed that optimizing n/m* was crucial for achieving high THz intrinsic absorption in MXenes. This study not only explored the underlying THz-matter interaction mechanism in MXenes but also provided guidance for designing high THz absorption materials.

  • RESEARCH ARTICLE
    Yeonghun Yun , Devthade Vidyasagar , Sunwoo Kim , Sung Woong Yang , Doyun Im , Rajendra Kumar Gunasekaran , Sangheon Lee , Jina Jung , Won Chang Choi , Roy Byung Kyu Chung , Dong Hoe Kim , Ji-Sang Park , Sangwook Lee

    All-perovskite tandem solar cells have garnered considerable attention because of their potential to outperform single-junction cells. However, charge recombination losses within narrow-bandgap (NBG) perovskite subcells hamper the advancement of this technology. Herein, we introduce a lithium salt, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), for modifying NBG perovskites. Interestingly, LiTFSI bifunctionally passivates the surface and bulk of NBG by dissociating into Li+ and TFSI ions. We found that TFSI passivates halide vacancies on the perovskite surface, reducing nonradiative recombination, while Li+ acts as an interstitial n-type dopant, mitigating the defects of NBG perovskites and potentially suppressing halide migration. Furthermore, the underlying mechanism of LiTFSI passivation was investigated through the density functional theory calculations. Accordingly, LiTFSI facilitates charge extraction and extends the charge carrier lifetime, resulting in an NBG device with power conversion efficiency (PCE) of 22.04% (certified PCE of 21.42%) and an exceptional fill factor of 81.92%. This enables the fabrication of all-perovskite tandem solar cells with PCEs of 27.47% and 26.27% for aperture areas of 0.0935 and 1.02 cm2, respectively.

  • RESEARCH ARTICLE
    Qundao Xu , Meng Xu , Siqi Tang , Shaojie Yuan , Ming Xu , Wei Zhang , Xian-Bin Li , Zhongrui Wang , Xiangshui Miao , Chengliang Wang , Matthias Wuttig

    Chalcogenides, despite their versatile functionality, share a notably similar local structure in their amorphous states. Particularly in electronic phase-change memory applications, distinguishing these glasses from neighboring compositions that do not possess memory capabilities is inherently difficult when employing traditional analytical methods. This has led to a dilemma in materials design since an atomistic view of the arrangement in the amorphous state is the key to understanding and optimizing the functionality of these glasses. To tackle this challenge, we present a machine learning (ML) approach to separate electronic phase-change materials (ePCMs) from other chalcogenides, based upon subtle differences in the short-range order inside the glassy phase. Leveraging the established structure–property relations in chalcogenide glasses, we select suitable features to train accurate machine learning models, even with a modestly sized dataset. The trained model accurately discerns the critical transition point between glass compositions suitable for use as ePCMs and those that are not, particularly for both GeTe–GeSe and Sb2Te3–Sb2Se3 materials, in line with experiments. Furthermore, by extracting the physical knowledge that the ML model has offered, we pinpoint three pivotal structural features of amorphous chalcogenides, that is, the bond angle, packing efficiency, and the length of the fourth bond, which provide a map for materials design with the ability to “predict” and “explain”. All three of the above features point to the smaller Peierls-like distortion and more well-defined octahedral clusters in amorphous ePCMs than non-ePCMs. Our study delves into the mechanisms shaping these structural attributes in amorphous ePCMs, yielding valuable insights for the AI-powered discovery of novel materials.