Inch-sized 2D perovskite single-crystal scintillators for high-resolution neutron and X-ray imaging

Boming Yang , Xiao Ouyang , Xue Zhao , Jie Su , Yang Li , Siyu Zhang , Xiaoping Ouyang

InfoMat ›› 2025, Vol. 7 ›› Issue (4) : e12648

PDF
InfoMat ›› 2025, Vol. 7 ›› Issue (4) :e12648 DOI: 10.1002/inf2.12648
RESEARCH ARTICLE

Inch-sized 2D perovskite single-crystal scintillators for high-resolution neutron and X-ray imaging

Author information +
History +
PDF

Abstract

Nuclear radiation detectors are critical to transient nuclear reaction imaging, medical diagnostic imaging, security checks, industry inspection, and so forth, with many potential uses limited by scintillator dimensions. Current scintillator crystals are limited by the long-standing issues of hetero-crystalline formation and consequently inferior crystal dimensions and quality. Particularly, the hybrid organic–inorganic perovskites (HOIPs) exhibit scintillation capability under X-ray and fast neutrons within a single framework, owing to the presence of heavy elements and high hydrogen density groups, respectively. However, the achievement of high-performance and large-area imaging by HOIPs scintillators is impeded by the crystal growth technology. Herein, we propose an optimal crystal growth strategy and obtain an inch-sized high-quality (PEA)2PbBr4 single crystals (SCs) with a record dimension of 4.60 cm × 3.80 cm × 0.19 cm. Their application as synergistic scintillators in high-energy rays and charged particles detection are investigated, which exhibit high light yield (38 600 photons MeV–1) and ultra-fast decay times that are 4.89, 27.98, and 3.84 ns under the 375-nm laser, γ-ray, and α particles, respectively. Moreover, the (PEA)2PbBr4 SCs demonstrate a remarkably high spatial resolution of 23.2 lp mm–1 (at MTF = 20%) for X-ray and 2.00 lp mm–1 for fast neutrons, surpassing the reported perovskites scintillators.

Keywords

high-resolution / hybrid organic–inorganic perovskites / neutron imaging / single crystals / X-ray imaging

Cite this article

Download citation ▾
Boming Yang, Xiao Ouyang, Xue Zhao, Jie Su, Yang Li, Siyu Zhang, Xiaoping Ouyang. Inch-sized 2D perovskite single-crystal scintillators for high-resolution neutron and X-ray imaging. InfoMat, 2025, 7(4): e12648 DOI:10.1002/inf2.12648

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li Y, Liu B, Chen L, et al. In situ preparation of ultrastable and flexible BA2PbBr4 nanocrystal films for X-ray imaging. J Mater Chem C. 2023; 11(37): 12759-12763.

[2]

Wang Y, Li M, Chai Z, Wang Y, Wang S. Perovskite scintillators for improved X-ray detection and imaging. Angew Chem Int Ed Engl. 2023; 62(38): e202304638.

[3]

Lehmann EH, Tremsin A, Grünzweig C, Johnson I, Boillat P, Josic L. Neutron imaging—detector options in progress. J Instrum. 2011; 6(1): C01050.

[4]

Zboray R, Adams R, Morgano M, Kis Z. Qualification and development of fast neutron imaging scintillator screens. Nucl Instrum Meth A. 2019; 930: 142-150.

[5]

Valentine JD, Wehe DK, Knoll GF, Moss CE. Temperature dependence of CsI (Tl) absolute scintillation yield. IEEE Trans Nucl Sci. 1993; 40(4): 1267-1274.

[6]

Kapusta M, Pawelke J, Moszyński M. Comparison of YAP and BGO for high-resolution PET detectors. Nucl Instrum Meth A. 1998; 404(2-3): 413-417.

[7]

Zhang H, Yang Z, Zhou M, et al. Reproducible X-ray imaging with a perovskite nanocrystal scintillator embedded in a transparent amorphous network structure. Adv Mater. 2021; 33(40): 2102529.

[8]

Kim FH, Penumadu D, Kardjilov N, Manke I. High-resolution X-ray and neutron computed tomography of partially saturated granular materials subjected to projectile penetration. Int J Impact Eng. 2016; 89: 72-82.

[9]

Liu Y, Sowerby BD, Tickner JR. Comparison of neutron and high-energy X-ray dual-beam radiography for air cargo inspection. Appl Radiat Isotopes. 2008; 66(4): 463-473.

[10]

Xie A, Hettiarachchi C, Maddalena F, et al. Lithium-doped two-dimensional perovskite scintillator for wide-range radiation detection. Commun Mater. 2020; 1(1): 37.

[11]

Sun Q, Hao Z, Li J, et al. Dual discrimination of fast neutrons from strong γ noise using organic single-crystal scintillator. Matter. 2023; 6(1): 274-284.

[12]

Aharon S, Etgar L. Two dimensional organometal halide perovskite nanorods with tunable optical properties. Nano Lett. 2016; 16(5): 3230-3235.

[13]

Hu J, Yan L, You W. Two-dimensional organic-inorganic hybrid perovskites: a new platform for optoelectronic applications. Adv Mater. 2018; 30(48): 1802041.

[14]

Sheikh T, Nawale V, Pathoor N, Phadnis C, Chowdhury A, Nag A. Molecular intercalation and electronic two dimensionality in layered hybrid perovskites. Angew Chem Int Ed Engl. 2020; 59(28): 11653-11659.

[15]

Xia M, Xie Z, Wang H, et al. Sub-nanosecond 2D perovskite scintillators by dielectric engineering. Adv Mater. 2023; 35(18): 2211769.

[16]

Maddalena F, Xie A, Arramel A, et al. Effect of commensurate lithium doping on the scintillation of two-dimensional perovskite crystals. J Mater Chem C Mater. 2021; 9(7): 2504-2512.

[17]

Maddalena F, Mahyuddin MH, Kowal D, et al. Lattice expansion in Rb-doped hybrid organic-inorganic perovskite crystals resulting in smaller band-gap and higher light-yield scintillators. Inorg Chem. 2023; 62(23): 8892-8902.

[18]

Kishimoto S, Shibuya K, Nishikido F, Koshimizu M, Haruki R, Yoda Y. Subnanosecond time-resolved X-ray measurements using an organic-inorganic perovskite scintillator. Appl Phys Lett. 2008; 93(26): 261901.

[19]

Kawano N, Koshimizu M, Horiai A, et al. Effect of organic moieties on the scintillation properties of organic-inorganic layered perovskite-type compounds. Jpn J Appl Phys. 2016; 55(11): 110309.

[20]

Xia M, Niu G, Liu L, et al. Organic-inorganic hybrid perovskite scintillators for mixed field radiation detection. InfoMat. 2022; 4(9): e12325.

[21]

Jin T, Liu Z, Luo J, et al. Self-wavelength shifting in two-dimensional perovskite for sensitive and fast gamma-ray detection. Nat Commun. 2023; 14(1): 2808.

[22]

Kawano N, Koshimizu M, Okada G, et al. Scintillating organic-inorganic layered perovskite-type compounds and the gamma-ray detection capabilities. Sci Rep. 2017; 7(1): 14754.

[23]

Yan W, Duan B, Zhu Z, et al. Organic-inorganic hybrid perovskite scintillator for high-resolution X-ray imaging. Nucl Instrum Methods Phys Res B. 2024; 546: 165159.

[24]

Jia B, Chu D, Li N, et al. Airflow-controlled crystallization for a multi-inch 2D halide perovskite single-crystal scintillator for fast high-resolution X-ray imaging. ACS Energy Lett. 2023; 8(1): 590-599.

[25]

Yan W, Duan B, Li Y, et al. Organic-inorganic hybrid perovskite scintillator for neutron and γ-ray detection. ACS Appl Opt Mater. 2023; 1(11): 1856-1861.

[26]

He Y, Song J, Li M, et al. Perovskite computed tomography imager and three-dimensional reconstruction. Nat Photonics. 2024; 18(10): 1052-1058.

[27]

Shao W, Li Q, He T, et al. Synergy of organic and inorganic sites in 2D perovskite for fast neutron and X-ray imaging. Adv Funct Mater. 2023; 33(40): 2301767.

[28]

Zheng J, Zeng Y, Wang J, et al. Hydrogen-rich 2D halide perovskite scintillators for fast neutron radiography. J Am Chem Soc. 2021; 143(50): 21302-21311.

[29]

Zhang Y, Liu Y, Xu Z, et al. Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection. Nat Commun. 2020; 11(1): 2304.

[30]

Liu Y, Zhang Y, Yang Z, et al. Low-temperature-gradient crystallization for multi-inch high-quality perovskite single crystals for record performance photodetectors. Mater Today. 2019; 22: 67-75.

[31]

De Yoreo JJ, Gilbert PUPA, Sommerdijk NAJM, et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science (1979). 2015; 349(6247): aaa6760.

[32]

Jung M, Ji SG, Kim G, Seok S Il. Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications. Chem Soc Rev. 2019; 48(7): 2011-2038.

[33]

LaMer VK. Nucleation in phase transitions. Ind Eng Chem. 1952; 44(6): 1270-1277.

[34]

Cai M, Li P, Ma J, et al. The dominant roles of the seed template in driving controllable growth of perovskite crystal. Nano Today. 2024; 54: 102133.

[35]

Shibuya K, Koshimizu M, Nishikido F, Saito H, Kishimoto S. Poly[bis(phenethylammonium) [dibromidoplumbate(II)]-di- μ-bromido]. Acta Crystallogr Sect E. 2009; 6(11): m1323-m1324.

[36]

Pope CG. X-ray diffraction and the Bragg equation. J Chem Educ. 1997; 74(1): 129-131.

[37]

Wan P, Jin T, Gao R, et al. 2D perovskite neutron scintillators with nanosecond time resolution and linearity energy response. Adv Funct Mater. 2023; 34(4): 2308263.

[38]

Sheikh T, Shinde A, Mahamuni S, Nag A. Possible dual bandgap in (C4H9NH3)2PbI4 2D layered perovskite: single-crystal and exfoliated few-layer. ACS Energy Lett. 2018; 3(12): 2940-2946.

[39]

Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous germanium. Phys Status Solidi B. 1966; 15(2): 627-637.

[40]

Khan I, Shahab HIU, Ali A, Ali Z, Ahmad I. Elastic and optoelectronic properties of Cs2NaMCl6 (M = In, Tl, Sb, Bi). J Electron Mater. 2021; 50(2): 456-466.

[41]

Lin Q, Armin A, Nagiri RCR, Burn PL, Meredith P. Electro-optics of perovskite solar cells. Nat Photonics. 2014; 9(2): 106-112.

[42]

Hirasawa M, Ishihara T, Goto T, Uchida K, Miura N. Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3)PbI3. Physica B. 1994; 201: 427-430.

[43]

Morad V, McCall KM, Sakhatskyi K, et al. Luminescent lead halide ionic liquids for high-spatial-resolution fast neutron imaging. ACS Photonics. 2021; 8(11): 3357-3364.

[44]

Li Y, Chen L, Liu B, et al. Scintillation performance of two-dimensional perovskite (BA)2PbBr4 microcrystals. J Mater Chem C Mater.2021; 9(47): 17124-17128.

[45]

Wang Q, Zhou Q, Nikl M, et al. Highly resolved X-ray imaging enabled by In(I) doped perovskite-like Cs3Cu2I5 single crystal scintillator. Adv Opt Mater. 2022; 10(11): 2200304.

[46]

Wu X, Zhou Q, Wu H, et al. Cs4PbBr6-xClx single crystals with tunable emission for X-ray detection and imaging. J Phys Chem C. 2021; 125(48): 26619-26626.

[47]

Liu H, Peng J, Gong K, et al. The design and construction of CSNS drift tube linac. Nucl Instrum Meth A.2018; 911: 131-137.

[48]

Tan Z, Tang J, Jing H, et al. Energy-resolved fast neutron resonance radiography at CSNS. Nucl Instrum Meth A.2018; 889: 122-128.

[49]

Hu XR, Fan GT, Jiang W, et al. Measurements of the 197 Au (n, γ) cross section up to 100 keV at the CSNS Back-n facility. Nucl Sci Tech. 2021; 32(9): 101.

[50]

Chen Y, Luan G, Bao J, et al. Neutron energy spectrum measurement of the back-n white neutron source at CSNS. Eur Phys J A. 2019; 55(7): 115.

[51]

Chadwick MB, Obložinský P, Herman M, et al. ENDF/B-VII.0: next generation evaluated nuclear data library for nuclear science and technology. Nuclear Data Sheets. 2006; 107(12): 2931-3060.

[52]

McCall KM, Sakhatskyi K, Lehmann E, et al. Fast neutron imaging with semiconductor nanocrystal scintillators. ACS Nano. 2020; 14(11): 14686-14697.

[53]

Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994; 50(24): 17953-17979.

[54]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996; 77(18): 3865-3868.

[55]

Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem. 2006; 27(15): 1787-1799.

RIGHTS & PERMISSIONS

2024 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

57

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/