Simultaneous passivation of surface and bulk defects in all-perovskite tandem solar cells using bifunctional lithium salts

Yeonghun Yun , Devthade Vidyasagar , Sunwoo Kim , Sung Woong Yang , Doyun Im , Rajendra Kumar Gunasekaran , Sangheon Lee , Jina Jung , Won Chang Choi , Roy Byung Kyu Chung , Dong Hoe Kim , Ji-Sang Park , Sangwook Lee

InfoMat ›› 2025, Vol. 7 ›› Issue (4) : e12656

PDF
InfoMat ›› 2025, Vol. 7 ›› Issue (4) :e12656 DOI: 10.1002/inf2.12656
RESEARCH ARTICLE

Simultaneous passivation of surface and bulk defects in all-perovskite tandem solar cells using bifunctional lithium salts

Author information +
History +
PDF

Abstract

All-perovskite tandem solar cells have garnered considerable attention because of their potential to outperform single-junction cells. However, charge recombination losses within narrow-bandgap (NBG) perovskite subcells hamper the advancement of this technology. Herein, we introduce a lithium salt, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), for modifying NBG perovskites. Interestingly, LiTFSI bifunctionally passivates the surface and bulk of NBG by dissociating into Li+ and TFSI ions. We found that TFSI passivates halide vacancies on the perovskite surface, reducing nonradiative recombination, while Li+ acts as an interstitial n-type dopant, mitigating the defects of NBG perovskites and potentially suppressing halide migration. Furthermore, the underlying mechanism of LiTFSI passivation was investigated through the density functional theory calculations. Accordingly, LiTFSI facilitates charge extraction and extends the charge carrier lifetime, resulting in an NBG device with power conversion efficiency (PCE) of 22.04% (certified PCE of 21.42%) and an exceptional fill factor of 81.92%. This enables the fabrication of all-perovskite tandem solar cells with PCEs of 27.47% and 26.27% for aperture areas of 0.0935 and 1.02 cm2, respectively.

Keywords

all-perovskite tandem solar cells / defect passivation / LiTFSI salt / narrow-bandgap perovskites / nonradiative charge recombination

Cite this article

Download citation ▾
Yeonghun Yun, Devthade Vidyasagar, Sunwoo Kim, Sung Woong Yang, Doyun Im, Rajendra Kumar Gunasekaran, Sangheon Lee, Jina Jung, Won Chang Choi, Roy Byung Kyu Chung, Dong Hoe Kim, Ji-Sang Park, Sangwook Lee. Simultaneous passivation of surface and bulk defects in all-perovskite tandem solar cells using bifunctional lithium salts. InfoMat, 2025, 7(4): e12656 DOI:10.1002/inf2.12656

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tong JH, Song ZN, Kim DH, et al. Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science. 2019; 364(6439): 475-479.

[2]

Lin RX, Xiao K, Qin ZY, et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink. Nat Energy. 2019; 4(10): 864-873.

[3]

Li CW, Song ZN, Chen C, et al. Low-bandgap mixed tin-lead iodide perovskites with reduced methylammonium for simultaneous enhancement of solar cell efficiency and stability. Nat Energy. 2020; 5(10): 768-776.

[4]

Xiao K, Lin RX, Han QL, et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat Energy. 2020; 5(11): 870-880.

[5]

Wu X, Xiong GQ, Yue ZY, Dong ZY, Cheng YH. Defect passivation engineering of wide-bandgap perovskites for high-performance solar cells. Mater Chem Front. 2024; 8(3): 800-813.

[6]

Leijtens T, Bush KA, Prasanna R, MD MG. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat Energy. 2018; 3(10): 828-838.

[7]

Lin R, Wang Y, Lu Q, et al. All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction. Nature. 2023; 620(7976): 994-1000.

[8]

NREL. Best research-cell efficiencies 2024. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.pdf

[9]

Li LD, Wang YR, Wang XY, et al. Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat Energy. 2022; 7(8): 708-717.

[10]

Lang FL, Chiang YH, Frohna K, et al. Methylammonium-free co-evaporated perovskite absorbers with high radiation and UV tolerance: an option for in-space manufacturing of space-PV? RSC Adv. 2023; 13(31): 21138-21145.

[11]

Chen L, Li CW, Xian YM, et al. Incorporating potassium citrate to improve the performance of tin-lead perovskite solar cells. Adv Energy Mater. 2023; 13(32): 2301218.

[12]

Zhou S, Fu S, Wang C, et al. Aspartate all-in-one doping strategy enables efficient all-perovskite tandems. Nature. 2023; 624(7990): 69-73.

[13]

Zhao D, Chen C, Wang C, et al. Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nat Energy. 2018; 3(12): 1093-1100.

[14]

Gunasekaran RK, Jung JA, Yang SW, et al. High-throughput compositional mapping of triple-cation tin-lead perovskites for high-efficiency solar cells. Infomat. 2023; 5(4): e12393.

[15]

Tong JH, Jiang Q, Ferguson AJ, et al. Carrier control in Sn-Pb perovskites via 2D cation engineering for all-perovskite tandem solar cells with improved efficiency and stability. Nat Energy. 2022; 7(7): 642-651.

[16]

Yang FJ, MacQueen RW, Menzel D, et al. Rubidium iodide reduces recombination losses in methylammonium-free tin-lead perovskite solar cells. Adv Energy Mater. 2023; 13(19): 2204339.

[17]

Gunasekaran RK, Jung J, Yang SW, et al. Regulating surface heterogeneity maximizes photovoltage and operational stability in tin-lead perovskite solar cells. ACS Energy Lett. 2023; 9(1): 102-109.

[18]

Hu SF, Otsuka K, Murdey R, et al. Optimized carrier extraction at interfaces for 23.6% efficient tin-lead perovskite solar cells. Energ Environ Sci. 2022; 15(5): 2096-2107.

[19]

Liang Z, Xu HF, Zhang Y, et al. A selective targeting anchor strategy affords efficient and stable ideal-bandgap perovskite solar cells. Adv Mater. 2022; 34(18): 2110241.

[20]

Wei MY, Xiao K, Walters G, et al. Combining efficiency and stability in mixed tin-lead perovskite solar cells by capping grains with an ultrathin 2D layer. Adv Mater. 2020; 32(12): 1907058.

[21]

Zhang L, Kang Q, Shi HX, et al. Surface defect passivation of Pb-Sn-alloyed perovskite film by 1,3-propanediammonium iodide toward high-performance photovoltaic devices. Solar RRL. 2021; 5(8): 2100299.

[22]

Lin RX, Xu J, Wei MY, et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature. 2022; 603(7899): 73-78.

[23]

Chen H, Maxwell A, Li CW, et al. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature. 2023; 613(7945): 676-681.

[24]

Liu XX, Zhang ZF, Lin F, Cheng YH. Structural modulation and assembling of metal halide perovskites for solar cells and light-emitting diodes. Inf Dent. 2021; 3(11): 1218-1250.

[25]

Yang T, Ma C, Cai W, et al. Amidino-based Dion-Jacobson 2D perovskite for efficient and stable 2D/3D heterostructure perovskite solar cells. Joule. 2023; 7(3): 574-586.

[26]

Mathew P, Cho J, Kamat PV. Ramifications of ion migration in 2D lead halide perovskites. ACS Energy Lett. 2024; 9(3): 1103-1114.

[27]

Zhong Y, Yang J, Wang XY, et al. Inhibition of ion migration for highly efficient and stable perovskite solar cells. Adv Mater. 2023; 35(52): e2302552.

[28]

Liu X, Zheng BL, Shi L, et al. Perovskite solar cells based on spiro-OMeTAD stabilized with an alkylthiol additive. Nat Photonics. 2023; 17(1): 96-105.

[29]

Zhang TK, Wang F, Kim HB, et al. Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells. Science. 2022; 377(6605): 495-501.

[30]

Nakka L, Cheng Y, Aberle AG, Lin F. Analytical review of Spiro-OMeTAD hole transport materials: paths toward stable and efficient perovskite solar cells. Adv Energy Sustain Res. 2022; 3(8): 2200045.

[31]

Yu Z, Wang J, Chen B, et al. Solution-processed ternary tin (II) alloy as hole-transport layer of Sn-Pb perovskite solar cells for enhanced efficiency and stability. Adv Mater. 2022; 34(49): 2205769.

[32]

Tan S, Yavuz I, Weber MH, et al. Shallow iodine defects accelerate the degradation of α-phase formamidinium perovskite. Joule. 2020; 4(11): 2426-2442.

[33]

Domanski K, Roose B, Matsui T, et al. Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. Energ Environ Sci. 2017; 10(2): 604-613.

[34]

Domanski K, Alharbi EA, Hagfeldt A, Grätzel M, Tress W. Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nat Energy. 2018; 3(1): 61-67.

[35]

Oliver RDJ, Caprioglio P, Peña-Camargo F, et al. Understanding and suppressing non-radiative losses in methylammonium-free wide-bandgap perovskite solar cells. Energ Environ Sci. 2022; 15(2): 714-726.

[36]

Krogmeier B, Staub F, Grabowski D, Rau U, Kirchartz T. Quantitative analysis of the transient photoluminescence of CH3NH3PbI3/PC61BM heterojunctions by numerical simulations. Sustain Energy Fuels. 2018; 2(5): 1027-1034.

[37]

Wetzelaer G, Scheepers M, Sempere AM, et al. Trap-assisted non-radiative recombination in organic-inorganic perovskite solar cells. Adv Mater. 2015; 27(11): 1837-1841.

[38]

Tress W, Yavari M, Domanski K, et al. Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells. Energy Environ Sci. 2018; 11(3): 715.

[39]

Caprioglio P, Wolff CM, Sandberg OJ, et al. On the origin of the ideality factor in perovskite solar cells. Adv Energy Mater. 2020; 10(27): 2000502.

[40]

Stolterfoht M, Grischek M, Caprioglio P, et al. How to quantify the efficiency potential of neat perovskite films: perovskite semiconductors with an implied efficiency exceeding 28%. Adv Mater. 2020; 32(17): 2000080.

[41]

Al-Ashouri A, Köhnen E, Li B, et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science. 2020; 370(6522): 1300-1309.

[42]

Xia JX, Zhang Y, Xiao CX, et al. Tailoring electric dipole of hole-transporting material p-dopants for perovskite solar cells. Joule. 2022; 6(7): 1689-1709.

[43]

Yun AJ, Kim J, Gil B, et al. Incorporation of lithium fluoride restraining thermal degradation and photodegradation of organometal halide perovskite solar cells. ACS Appl Mater Interfaces. 2020; 12(45): 50418-50425.

[44]

Li Z, Xiao CX, Yang Y, et al. Extrinsic ion migration in perovskite solar cells. Energ Environ Sci. 2017; 10(5): 1234-1242.

[45]

Tabi GD, Pham HT, Zhan H, et al. LiI doping of mixed-cation mixed-halide perovskite solar cells: defect passivation, controlled crystallization and transient ionic response. Mater Today Phys. 2022; 27: 100822.

[46]

Cao J, Tao SX, Bobbert PA, Wong C-P, Zhao N. Interstitial occupancy by extrinsic alkali cations in perovskites and its impact on ion migration. Adv Mater. 2018; 30(26): 1707350.

[47]

Atourki L, Ouafi M, Makha M, et al. Impact of Li doping on the photophysical properties of perovskite absorber layer FAPbI3. J Alloys Compd. 2021; 850: 156696.

[48]

Yu D, Pan M, Liu G, et al. Electron-withdrawing organic ligand for high-efficiency all-perovskite tandem solar cells. Nat Energy. 2024; 9(3): 298-307.

[49]

Hernandez LH, Lanzetta L, Jang S, et al. Factors limiting the operational stability of tin-lead perovskite solar cells. ACS Energy Lett. 2023; 8(1): 259-273.

[50]

Christians JA, Schulz P, Tinkham JS, et al. Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability. Nat Energy. 2018; 3(1): 68-74.

[51]

Guo X, Li J, Wang B, et al. Improving and stabilizing perovskite solar cells with incorporation of graphene in the Spiro-OMeTAD layer: suppressed Li ions migration and improved charge extraction. ACS Appl Energy Mater. 2020; 3(1): 970-976.

[52]

Lee I, Yun JH, Son HJ. Kim T-S accelerated degradation due to weakened adhesion from Li-TFSI additives in perovskite solar cells. ACS Appl Mater Interfaces. 2017; 9(8): 7029-7035.

[53]

Jiang L-L, Wang Z-K, Li M, Li CH, Fang PF, Liao LS. Flower-like MoS2 nanocrystals: a powerful sorbent of Li+ in the Spiro-OMeTAD layer for highly efficient and stable perovskite solar cells. J Mater Chem A. 2019; 7(8): 3655-3663.

[54]

Tan S, Huang TY, Yavuz I, et al. Surface reconstruction of halide perovskites during post-treatment. J Am Chem Soc. 2021; 143(18): 6781-6786.

[55]

Rakocevic L, Mundt LE, Gehlhaar R, et al. Loss analysis in perovskite photovoltaic modules. Solar RRL. 2019; 3(12): 1900338.

[56]

Choudhury BD, Ibarra B, Cesano F, et al. The photon absorber and interconnecting layers in multijunction organic solar cell. Solar Energy. 2020; 201(4): 28-44.

[57]

Zheng DG, Kim DH. Degradation mechanisms of perovskite light-emitting diodes under electrical bias. Nanophotonics. 2023; 12(3): 451-476.

[58]

Zou YT, Wu T, Fu F, et al. Thermal-induced interface degradation in perovskite light-emitting diodes. J Mater Chem C. 2020; 8(43): 15079-15085.

[59]

Kung PK, Li MH, Lin CF, Chen PT. How temperature impacts material properties and photovoltaic performance of mixed-halide perovskite via light-induced ion migration. J Mater Chem C. 2024; 12(29): 11181-11191.

[60]

Vidyasagar D, Yun Y, Cho JY, et al. Surface-functionalized hole-selective monolayer for high efficiency single-junction wide-bandgap and monolithic tandem perovskite solar cells. J Energy Chem. 2024; 88(28): 317-326.

[61]

Yun Y, Han GS, Park GN, et al. A wide bandgap halide perovskite based self-powered blue photodetector with 84.9% of external quantum efficiency. Adv Mater. 2022; 34(51): 2206932.

[62]

Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994; 50(24): 17953-17979.

[63]

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996; 54(16): 11169-11186.

[64]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996; 77(18): 3865-3868.

[65]

Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J Comput Chem. 2011; 32(7): 1456-1465.

RIGHTS & PERMISSIONS

2025 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

76

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/