Interface engineering of inorganic solid-state lithium batteries via atomic and molecular layer deposition

Huaihu Sun , Hongliu Dai , Gaixia Zhang , Shuhui Sun

InfoMat ›› 2025, Vol. 7 ›› Issue (4) : e12650

PDF
InfoMat ›› 2025, Vol. 7 ›› Issue (4) :e12650 DOI: 10.1002/inf2.12650
REVIEW ARTICLE

Interface engineering of inorganic solid-state lithium batteries via atomic and molecular layer deposition

Author information +
History +
PDF

Abstract

Currently, conventional organic liquid electrolytes (OLEs) are the main limiting factor for the next generation of high-energy lithium batteries. There is growing interest in inorganic solid-state electrolytes (ISEs). However, ISEs still face various challenges in practical applications, particularly at the interface between ISE and the electrode, which significantly affects the performance of solid-state batteries (SSBs). In recent decades, atomic and molecular layer deposition (ALD and MLD) techniques, widely used to manipulate interface properties and construct novel electrode structures, have emerged as promising strategies to address the interface challenges faced by ISEs. This review focuses on the latest developments and applications of ALD/MLD technology in SSBs, including interface modification of cathodes and lithium metal anodes. From the perspective of interface strategy mechanism, we present experimental progress and computational simulations related to interface chemistry and electrochemical stability in thermodynamic contents. In addition, this article explores the future direction and prospects for ALD/MLD in dynamic stability engineering of interfaces SSBs.

Keywords

atomic layer deposition / inorganic solid-state electrolytes / interface modification / molecular layer deposition / solid-state batteries

Cite this article

Download citation ▾
Huaihu Sun, Hongliu Dai, Gaixia Zhang, Shuhui Sun. Interface engineering of inorganic solid-state lithium batteries via atomic and molecular layer deposition. InfoMat, 2025, 7(4): e12650 DOI:10.1002/inf2.12650

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Winter M, Brodd RJ. What are batteries, fuel cells, and supercapacitors? Chem Rev. 2004; 104(10): 4245-4269.

[2]

Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed Engl. 2008; 47(16): 2930-2946.

[3]

Goodenough JB. Evolution of strategies for modern rechargeable batteries. Accounts Chem Res. 2013; 46(5): 1053-1061.

[4]

Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc. 2013; 135(4): 1167-1176.

[5]

Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li-O2 and Li-S batteries with high energy storage. Nat Mater. 2012; 11(1): 19-29.

[6]

Ma BC, Li RH, Zhu HT, et al. Stable oxyhalide-nitride fast ionic conductors for all-solid-state Li metal batteries. Adv Mater. 2024; 36(30): 2402324.

[7]

Manthiram A, Yu X, Wang S. Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater. 2017; 2(4): 16103.

[8]

Yoshiyuki I, Chen L, Mitsuru I, et al. High ionic conductivity in lithium lanthanum titanate. Solid State Commun. 1993; 86(10): 689-693.

[9]

Famprikis T, Canepa P, Dawson JA, Islam MS, Masquelier C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat Mater. 2019; 18(12): 1278-1291.

[10]

Yin YC, Yang JT, Luo JD, et al. A LaCl-based lithium superionic conductor compatible with lithium metal. Nature. 2023; 616(7955): 77-83.

[11]

Song LB, Li RH, Zhu HT, et al. Deeply lithiated carbonaceous materials for great lithium metal protection in all-solid-state batteries. Adv Mater. 2024; 36(26): 2400165.

[12]

Zhang S, Ma J, Dong SM, Cui GL. Designing all-solid-state batteries by theoretical computation: a review. Electrochem Energy Rev. 2023; 6(1): 4.

[13]

Liu QR, Chen QQ, Tang YB, Cheng HM. Interfacial modification, electrode/solid-electrolyte engineering, and monolithic construction of solid-state batteries. Electrochem Energy Rev. 2023; 6(1): 15.

[14]

Sung J, Kim SY, Harutyunyan A, et al. Ultra-thin lithium silicide interlayer for solid-state lithium-metal batteries. Adv Mater. 2023; 35(22): 2210835.

[15]

Jin E, Su J, Hou H, et al. Electro-chemo-mechanically stable and sodiophilic interface for Na metal anode in liquid-based and solid-state batteries. Adv Mater. 2024; 36(35): e2406837.

[16]

Guo HJ, Sun YP, Zhao Y, et al. Surface degradation of single-crystalline Ni-rich cathode and regulation mechanism by atomic layer deposition in solid-state lithium batteries. Angew Chem Int Ed Engl. 2022; 61(48): e202211626.

[17]

Liu J, Lu DP, Zheng JM, et al. Minimizing polysulfide shuttle effect in lithium-ion sulfur batteries by anode surface passivation. ACS Appl Mater Inter. 2018; 10(26): 21965-21972.

[18]

Han XG, Gong YH, Fu K, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater. 2017; 16(5): 572-579.

[19]

Wang CW, Gong YH, Liu BY, et al. Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano Lett. 2017; 17(1): 565-571.

[20]

Ren YY, Wachsman ED. All solid-state Li/LLZO/LCO battery enabled by alumina interfacial coating. J Electrochem Soc. 2022; 169(4): 040529.

[21]

Rajendran S, Pilli A, Omolere O, Kelber J, Arava LMR. An all-solid-state battery with a tailored electrode-electrolyte interface using surface chemistry and interlayer-based approaches. Chem Mater. 2021; 33(9): 3401-3412.

[22]

Deng T, Ji X, Zhao Y, et al. Tuning the anode-electrolyte interface chemistry for garnet-based solid-state Li metal batteries. Adv Mater. 2020; 32(23): 2000030.

[23]

Lin CF, Noked M, Kozen AC, et al. Solid electrolyte lithium phosphous oxynitride as a protective nanocladding layer for 3D high-capacity conversion electrodes. ACS Nano. 2016; 10(2): 2693-2701.

[24]

He L, Chen C, Kotobuki M, Zheng F, Zhou H, Lu L. A new approach for synthesizing bulk-type all-solid-state lithium-ion batteries. J Mater Chem A. 2019; 7(16): 9748-9760.

[25]

Wang X, Yushin G. Chemical vapor deposition and atomic layer deposition for advanced lithium ion batteries and supercapacitors. Energ Environ Sci. 2015; 8(7): 1889-1904.

[26]

Huang X, Lu Y, Jin J, et al. Method using water-based solvent to prepare Li7La3Zr2O12 solid electrolytes. ACS Appl Mater Interfaces. 2018; 10(20): 17147-17155.

[27]

Ahn C-W, Choi J-J, Ryu J, et al. Microstructure and ionic conductivity in Li7La3Zr2O12 film prepared by aerosol deposition method. J Electrochem Soc. 2014; 162(1): A60-A63.

[28]

Sakuda A, Hayashi A, Tatsumisago M. Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery. Sci Rep. 2013; 3(1): 2261.

[29]

Lobe S, Bauer A, Uhlenbruck S, Fattakhova-Rohlfing D. Physical vapor deposition in solid-state battery development: from materials to devices. Adv Sci (Weinh). 2021; 8(11): e2002044.

[30]

Hayashi T, Okada J, Toda E, et al. Electrochemical effect of lithium tungsten oxide modification on LiCoO2 thin film electrode. J Power Sources. 2015; 285: 559-567.

[31]

Lobe S, Dellen C, Finsterbusch M, et al. Radio frequency magnetron sputtering of Li7La3Zr2O12 thin films for solid-state batteries. J Power Sources. 2016; 307: 684-689.

[32]

Minami K, Mizuno F, Hayashi A, Tatsumisago M. Lithium ion conductivity of the Li2S-P2S5 glass-based electrolytes prepared by the melt quenching method. Solid State Ion. 2007; 178(11-12): 837-841.

[33]

Puurunen RL. Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. J Appl Phys. 2005; 97(12): 121301.

[34]

Steven GM. Atomic layer deposition: an overview. Chem Rev. 2010; 110(1): 111-131.

[35]

Pirayesh P, Tantratian K, Amirmaleki M, et al. From nanoalloy to nano-laminated interfaces for highly stable alkali-metal anodes. Adv Mater. 2023; 35(29): e2301414.

[36]

Mallick BC, Hsieh C-T, Yin K-M, Gandomi YA, Huang K-T. Review—on atomic layer deposition: current progress and future challenges. ECS J Solid State Sci Technol. 2019; 8(4): N55-N78.

[37]

Mallick BC, Hsieh CT, Yin KM, Li J, Ashraf Gandomi Y. Linear control of the oxidation level on graphene oxide sheets using the cyclic atomic layer reduction technique. Nanoscale. 2019; 11(16): 7833-7838.

[38]

Gu S, Hsieh C-T, Mallick BC, et al. Amino-functionalization on graphene oxide sheets using an atomic layer amidation technique. J Mater Chem C. 2020; 8(2): 700-705.

[39]

Zheng JM, Wu XB, Yang Y. A comparison of preparation method on the electrochemical performance of cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium ion battery. Electrochim Acta. 2011; 56(8): 3071-3078.

[40]

Meng X, Yang XQ, Sun X. Emerging applications of atomic layer deposition for lithium-ion battery studies. Adv Mater. 2012; 24(27): 3589-3615.

[41]

Puurunen RL. A short history of atomic layer deposition: Tuomo Suntola's atomic layer epitaxy. Chem Vapor Depos. 2014; 20(10-12): 332-344.

[42]

Nishizawa J, Abe H, Kurabayashi T. Molecular layer epitaxy. J Electrochem Soc. 1985; 132(5): 1197-1200.

[43]

Choi H, Shin S, Jeon H, et al. Fast spatial atomic layer deposition of Al2O3 at low temperature (<100°C) as a gas permeation barrier for flexible organic light-emitting diode displays. J Vac Sci Technol A.2016; 34(1): 01A121.

[44]

Weimer AW. Particle atomic layer deposition. J Nanopart Res. 2019; 21(1): 9.

[45]

Cai JY, Ma ZY, Wejinya U, et al. A revisit to atomic layer deposition of zinc oxide using diethylzinc and water as precursors. J Mater Sci. 2019; 54(7): 5236-5248.

[46]

Heo J, Hock AS, Gordon RG. Low temperature atomic layer deposition of tin oxide. Chem Mater. 2010; 22(17): 4964-4973.

[47]

Groner MD, Fabreguette FH, Elam JW, George SM. Low-temperature Al2O3 atomic layer deposition. Chem Mater. 2004; 16(4): 639-645.

[48]

Hamalainen J, Ritala M, Leskela M. Atomic layer deposition of noble metals and their oxides. Chem Mater. 2014; 26(1): 786-801.

[49]

Mackus AJM, Schneider JR, MacIsaac C, Baker JG, Bent SF. Synthesis of doped, ternary, and quaternary materials by atomic layer deposition: a review. Chem Mater. 2018; 31(4): 1142-1183.

[50]

Zhao W, Duan Y. Advanced applications of atomic layer deposition in perovskite-based solar cells. Adv Photonics Res. 2021; 2(7): 2100011.

[51]

Sun Q, Lau KC, Geng D, Meng X. Atomic and molecular layer deposition for superior lithium-sulfur batteries: strategies, performance, and mechanisms. Batteries & Supercaps. 2018; 1(2): 41-68.

[52]

Yu F, Du L, Zhang G, Su F, Wang W, Sun S. Electrode engineering by atomic layer deposition for sodium-ion batteries: from traditional to advanced batteries. Adv Funct Mater. 2019; 30(9): 1906890.

[53]

Zhao Z, Huang G, Kong Y, et al. Atomic layer deposition for electrochemical energy: from design to industrialization. Electrochem Energy Rev. 2022; 5(S1): 31.

[54]

Li Z, Su J, Wang X. Atomic layer deposition in the development of supercapacitor and lithium-ion battery devices. Carbon. 2021; 179: 299-326.

[55]

Yoshimura T, Tatsuura S, Sotoyama W. Polymer-films formed with monolayer growth steps by molecular layer deposition. Appl Phys Lett. 1991; 59(4): 482-484.

[56]

Yoshimura T, Tatsuura S, Sotoyama W, Matsuura A, Hayano T. Quantum wire and dot formation by chemical vapor-deposition and molecular layer deposition of one-dimensional conjugated polymer. Appl Phys Lett. 1992; 60(3): 268-270.

[57]

Du Y, George SM. Molecular layer deposition of nylon 66 films examined using in situ FTIR spectroscopy. J Phys Chem C. 2007; 111(24): 8509-8517.

[58]

Adarnczyk NM, Dameron AA, George SM. Molecular layer deposition of poly(p-phenylene terephthalamide) films using terephthaloyl chloride and p-phenylenediamine. Langmuir. 2008; 24(5): 2081-2089.

[59]

Loscutoff PW, Lee HBR, Bent SF. Deposition of ultrathin polythiourea films by molecular layer deposition. Chem Mater. 2010; 22(19): 5563-5569.

[60]

Ivanova TV, Maydannik PS, Cameron DC. Molecular layer deposition of polyethylene terephthalate thin films. J Vac Sci Technol A. 2012; 30(1): 01A121.

[61]

Zhou H, Bent SF. Highly stable ultrathin carbosiloxane films by molecular layer deposition. J Phys Chem C. 2013; 117(39): 19967-19973.

[62]

Giedraityte Z, Sundberg P, Karppinen M. Flexible inorganic-organic thin film phosphors by ALD/MLD. J Mater Chem C. 2015; 3(47): 12316-12321.

[63]

Nisula M, Karppinen M. In situ lithiated quinone cathode for ALD/MLD-fabricated high-power thin-film battery. J Mater Chem A. 2018; 6(16): 7027-7033.

[64]

Sarkar D, Ishchuk S, Taffa DH, et al. Oxygen-deficient Titania with adjustable band positions and defects; molecular layer deposition of hybrid organic-inorganic thin films as precursors for enhanced Photocatalysis. J Phys Chem C. 2016; 120(7): 3853-3862.

[65]

Su Y, Hao JL, Liu XS, Yang Y. Progress of atomic layer deposition and molecular layer deposition in the development of all-solid-state lithium batteries. Batteries & Supercaps. 2022; 6(1): e202200359.

[66]

Zhao Y, Zhang L, Liu J, et al. Atomic/molecular layer deposition for energy storage and conversion. Chem Soc Rev. 2021; 50(6): 3889-3956.

[67]

Woo JH, Trevey JE, Cavanagh AS, et al. Nanoscale interface modification of LiCoO2 by Al2O3 atomic layer deposition for solid-state Li batteries. J Electrochem Soc. 2012; 159(7): A1120-A1124.

[68]

Liu YL, Sun Q, Zhao Y, et al. Stabilizing the Interface of NASICON solid electrolyte against Li metal with atomic layer deposition. ACS Appl Mater Inter.2018; 10(37): 31240-31248.

[69]

Davis AL, Garcia-Mendez R, Wood KN, et al. Electro-chemo-mechanical evolution of sulfide solid electrolyte/Li metal interfaces: operando analysis and ALD interlayer effects. J Mater Chem A. 2020; 8(13): 6291-6302.

[70]

Fan ZJ, Ding B, Zhang TF, et al. Solid/solid interfacial architecturing of solid polymer electrolyte-based all-solid-state lithium-sulfur batteries by atomic layer deposition. Small. 2019; 15(46): 1903952.

[71]

Cortes FJQ, Lewis JA, Tippens J, Marchese TS, McDowell MT. How metallic protection layers extend the lifetime of NASICON-based solid-state lithium batteries. J Electrochem Soc. 2019; 167(5): 050502.

[72]

Li X, Ren ZH, Banis MN, et al. Unravelling the chemistry and microstructure evolution of a cathodic interface in sulfide-based all-solid-state Li-ion batteries. ACS Energy Lett. 2019; 4(10): 2480-2488.

[73]

Liu XS, Shi JW, Zheng BZ, et al. Constructing a high-energy and durable single-crystal NCM811 cathode for all-solid-state batteries by a surface engineering strategy. ACS Appl Mater Inter. 2021; 13(35): 41669-41679.

[74]

Wang CH, Li X, Zhao Y, et al. Manipulating interfacial nanostructure to achieve high-performance all-solid-state lithium-ion batteries. Small Methods.2019; 3(10): 1900261.

[75]

Vinado C, Wang SY, He Y, et al. Electrochemical and interfacial behavior of all solid state batteries using Li10SnP2S12 solid electrolyte. J Power Sources. 2018; 396: 824-830.

[76]

Liang JN, Hwang S, Li S, et al. Stabilizing and understanding the interface between nickel-rich cathode and PEO-based electrolyte by lithium niobium oxide coating for high-performance all-solid-state batteries. Nano Energy. 2020; 78: 105107.

[77]

Deng SX, Li X, Ren ZH, et al. Dual-functional interfaces for highly stable Ni-rich layered cathodes in sulfide all-solid-state batteries. Energy Storage Mater. 2020; 27: 117-123.

[78]

Zhao FP, Zhao Y, Wang J, et al. Tuning bifunctional interface for advanced sulfide-based all-solid-state batteries. Energy Storage Mater. 2020; 33: 139-146.

[79]

Kazyak E, Chen KH, Chen YX, Cho TH, Dasgupta NP. Enabling 4C fast charging of lithium-ion batteries by coating graphite with a solid-state electrolyte. Adv Energy Mater. 2022; 12(1): 2102618.

[80]

Kitsche D, Tang YS, Hemmelmann H, et al. Atomic layer deposition derived zirconia coatings on Ni-rich cathodes in solid-state batteries: correlation between surface constitution and cycling performance. Small Sci. 2023; 3(2): 2200073.

[81]

Jin Y, Yu H, He XQ, Liang XH. Stabilizing the Interface of all-solid-state electrolytes against cathode electrodes by atomic layer deposition. ACS Appl Energ Mater. 2022; 5(1): 760-769.

[82]

Kitsche D, Tang YS, Ma Y, et al. High performance all-solid-state batteries with a Ni-rich NCM cathode coated by atomic layer deposition and lithium thiophosphate solid electrolyte. ACS Appl Energ Mater. 2021; 4(7): 7338-7345.

[83]

Deng SX, Sun YP, Li X, et al. Eliminating the detrimental effects of conductive agents in sulfide-based solid-state batteries. ACS Energy Lett. 2020; 5(4): 1243-1251.

[84]

Wang CH, Zhao Y, Sun Q, et al. Stabilizing interface between Li10SnP2S12 and Li metal by molecular layer deposition. Nano Energy. 2018; 53: 168-174.

[85]

Zhang SM, Zhao Y, Zhao FP, et al. Gradiently sodiated alucone as an interfacial stabilizing strategy for solid-state Na metal batteries. Adv Funct Mater. 2020; 30(22): 2001118.

[86]

Kazyak E, Shin M, LePage WS, Cho TH, Dasgupta NP. Molecular layer deposition of Li-ion conducting “Lithicone” solid electrolytes. Chem Commun. 2020; 56(99): 15537-15540.

[87]

Nisula M, Karppinen M. Atomic/molecular layer deposition of lithium terephthalate thin films as high rate capability Li-ion battery anodes. Nano Lett. 2016; 16(2): 1276-1281.

[88]

Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor. Nat Mater. 2011; 10(9): 682-686.

[89]

Zhao Q, Liu XT, Stalin S, Khan K, Archer LA. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat Energy. 2019; 4(5): 365-373.

[90]

Li S, Yang SJ, Liu GX, et al. A dynamically stable mixed conducting interphase for all-solid-state lithium metal batteries. Adv Mater. 2024; 36(3): 2307768.

[91]

Jia LA, Zhu JH, Zhang X, Guo BJ, Du YB, Zhuang XD. Li-solid electrolyte interfaces/interphases in all-solid-state Li batteries. Electrochem Energy Rev. 2024; 7(1): 12.

[92]

Monroe C, Newman J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc. 2005; 152(2): A396-A404.

[93]

Han FD, Westover AS, Yue J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat Energy. 2019; 4(3): 187-196.

[94]

Hou GM, Ma XX, Sun QD, et al. Lithium dendrite suppression and enhanced interfacial compatibility enabled by an ex situ SEI on Li anode for LAGP-based all-solid-state batteries. ACS Appl Mater Inter. 2018; 10(22): 18610-18618.

[95]

Yue J, Zhu XY, Han FD, et al. Long cycle life all-solid-state sodium ion battery. ACS Appl Mater Inter. 2018; 10(46): 39645-39650.

[96]

Wu BB, Wang SY, Lochala J, et al. The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries. Energ Environ Sci. 2018; 11(7): 1803-1810.

[97]

Kasemchainan J, Zekoll S, Jolly DS, et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat Mater. 2019; 18(10): 1105-1111.

[98]

Porz L, Swamy T, Sheldon BW, et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv Energy Mater. 2017; 7(20): 1701003.

[99]

Doux JM, Nguyen H, Tan DHS, et al. Stack pressure considerations for room-temperature all-solid-state lithium metal batteries. Adv Energy Mater. 2020; 10(1): 1903253.

[100]

Sun F, Zielke L, Markotter H, et al. Morphological evolution of electrochemically plated/stripped lithium microstructures investigated by synchrotron x-ray phase contrast tomography. ACS Nano. 2016; 10(8): 7990-7997.

[101]

Crowther O, West AC. Effect of electrolyte composition on lithium dendrite growth. J Electrochem Soc. 2008; 155(11): A806.

[102]

Cheng EJ, Sharafi A, Sakamoto J. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim Acta. 2017; 223: 85-91.

[103]

Swamy T, Park R, Sheldon BW, et al. Lithium metal penetration induced by electrodeposition through solid electrolytes: example in single-crystal Li6La3ZrTaO12 garnet. J Electrochem Soc. 2018; 165(16): A3648-A3655.

[104]

Peryez SA, Cambaz MA, Thangadurai V, Fichtnert M. Interface in solid-state lithium battery: challenges, progress, and outlook. ACS Appl Mater Inter.2019; 11(25): 22029-22050.

[105]

Bulbula ST, Lu Y, Dong Y, Yang X-Y. Hierarchically porous graphene for batteries and supercapacitors. New J Chem. 2018; 42(8): 5634-5655.

[106]

Wenzel S, Leichtweiss T, Krüger D, Sann J, Janek J. Interphase formation on lithium solid electrolytes—an in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ion. 2015; 278: 98-105.

[107]

Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed Engl. 2007; 46(41): 7778-7781.

[108]

Shin BR, Nam YJ, Oh DY, Kim DH, Kim JW, Jung YS. Comparative study of TiS2/Li-in all-solid-state lithium batteries using glass-ceramic Li3PS4 and Li10GeP2S12 solid electrolytes. Electrochim Acta. 2014; 146: 395-402.

[109]

Braga MH, Ferreira JA, Stockhausen V, Oliveira JE, El-Azab A. Novel Li3ClO based glasses with superionic properties for lithium batteries. J Mater Chem A. 2014; 2(15): 5470-5480.

[110]

Lu X, Wu G, Howard JW, et al. Li-rich anti-perovskite Li3OCl films with enhanced ionic conductivity. Chem Commun (Camb). 2014; 50(78): 11520-11522.

[111]

Tippens J, Miers JC, Afshar A, et al. Visualizing chemomechanical degradation of a solid-state battery electrolyte. ACS Energy Lett. 2019; 4(6): 1475-1483.

[112]

Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G. Ionic conductivity of solid electrolytes based on lithium titanium phosphate. J Electrochem Soc. 1990; 137(4): 1023-1027.

[113]

Xu X, Wen Z, Wu X, Yang X, Gu Z. Lithium ion-conducting glass-ceramics of Li1.5Al0.5Ge1.5(PO4)3-xLi2O (x = 0.0-0.20) with good electrical and electrochemical properties. J Am Ceram Soc. 2007; 90(9): 2802-2806.

[114]

Wenzel S, Weber DA, Leichtweiss T, Busche MR, Sann J, Janek J. Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte. Solid State Ion. 2016; 286: 24-33.

[115]

Lepley ND, Holzwarth NAW, Du YA. Structures, Li+mobilities, and interfacial properties of solid electrolytes Li3PS4 and Li3PO4 from first principles. Phys Rev B. 2013; 88(10): 104103.

[116]

Chen B, Ju J, Ma J, et al. An insight into intrinsic interfacial properties between Li metals and Li10GeP2S12 solid electrolytes. Phys Chem Chem Phys. 2017; 19(46): 31436-31442.

[117]

Shen YB, Zhang YT, Han SJ, Wang JW, Peng ZQ, Chen LW. Unlocking the energy capabilities of lithium metal electrode with solid-state electrolytes. Joule. 2018; 2(9): 1674-1689.

[118]

de Klerk NJJ, Wagemaker M. Space-charge layers in all-solid-state batteries; important or negligible? ACS Appl Energy Mater. 2018; 1(10): 5609-5618.

[119]

Haruta M, Shiraki S, Suzuki T, et al. Negligible "negative space-charge layer effects" at oxide-electrolyte/electrode interfaces of thin-film batteries. Nano Lett. 2015; 15(3): 1498-1502.

[120]

Yada C, Ohmori A, Ide K, et al. Dielectric modification of 5V-class cathodes for high-voltage all-solid-state lithium batteries. Adv Energy Mater. 2014; 4(9): 1301416.

[121]

Koerver R, Walther F, Aygun I, et al. Redox-active cathode interphases in solid-state batteries. J Mater Chem A. 2017; 5(43): 22750-22760.

[122]

Banerjee A, Tang HM, Wang XF, et al. Revealing nanoscale solid-solid interfacial phenomena for long-life and high-energy all-solid-state batteries. ACS Appl Mater Inter. 2019; 11(46): 43138-43145.

[123]

Zhang WB, Leichtweiss T, Culver SP, et al. The detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries. ACS Appl Mater Inter.2017; 9(41): 35888-35896.

[124]

Auvergniot J, Cassel A, Ledeuil JB, Viallet V, Seznec V, Dedryvere R. Interface stability of Argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries. Chem Mater. 2017; 29(9): 3883-3890.

[125]

Park K, Yu BC, Jung JW, et al. Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: Interface between LiCoO2 and garnet-Li7La3Zr2O12. Chem Mater. 2016; 28(21): 8051-8059.

[126]

Vardar G, Bowman WJ, Lu QY, et al. Structure, chemistry, and charge transfer resistance of the Interface between Li7La3Zr2O12 electrolyte and LiCoO2 cathode. Chem Mater. 2018; 30(18): 6259-6276.

[127]

Wang P, Qu WJ, Song WL, Chen HS, Chen RJ, Fang DN. Electro-chemo-mechanical issues at the interfaces in solid-state lithium metal batteries. Adv Funct Mater. 2019; 29(27): 1900950.

[128]

Persson BNJ. Contact mechanics for randomly rough surfaces. Surf Sci Rep. 2006; 61(4): 201-227.

[129]

Tian HK, Qi Y. Simulation of the effect of contact area loss in all-solid-state Li-ion batteries. J Electrochem Soc. 2017; 164(11): E3512-E3521.

[130]

Koerver R, Aygun I, Leichtweiss T, et al. Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chem Mater. 2017; 29(13): 5574-5582.

[131]

Lee H, Oh P, Kim J, et al. Advances and prospects of sulfide all-solid-state lithium batteries via one-to-one comparison with conventional liquid lithium ion batteries. Adv Mater. 2019; 31(29): 1900376.

[132]

Hu Y-S. Batteries: Getting solid. Nat Energy. 2016; 1(4): 16042.

[133]

Chung H, Kang B. Mechanical and thermal failure induced by contact between a Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte and Li metal in an all solid-state Li cell. Chem Mater. 2017; 29(20): 8611-8619.

[134]

Kaboli S, Girard G, Zhu W, et al. Thermal evolution of NASICON type solid-state electrolytes with lithium at high temperature via in situ scanning electron microscopy. Chem Commun. 2021; 57(84): 11076-11079.

[135]

Huo HY, Luo J, Thangadurai V, Guo XX, Nan CW, Sun XL. Li2CO3: a critical issue for developing solid garnet batteries. ACS Energy Lett. 2020; 5(1): 252-262.

[136]

Sharafi A, Kazyak E, Davis AL, et al. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12. Chem Mater. 2017; 29(18): 7961-7968.

[137]

Alexander GV, Patra S, Valiyaveetil S, et al. Electrodes-electrolyte interfacial engineering for realizing room temperature lithium metal battery based on garnet structured solid fast Li+ conductors. J Power Sources. 2018; 396: 764-773.

[138]

Feng WL, Dong XL, Li PL, Wang YG, Xia YY. Interfacial modification of Li/garnet electrolyte by a lithiophilic and breathing interlayer. J Power Sources. 2019; 419: 91-98.

[139]

Luo W, Gong YH, Zhu YZ, et al. Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J Am Chem Soc. 2016; 138(37): 12258-12262.

[140]

Luo W, Gong YH, Zhu YZ, et al. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer. Adv Mater. 2017; 29(22): 1606042.

[141]

He MH, Cui ZH, Chen C, Li YQ, Guo XX. Formation of self-limited, stable and conductive interfaces between garnet electrolytes and lithium anodes for reversible lithium cycling in solid-state batteries. J Mater Chem A. 2018; 6(24): 11463-11470.

[142]

Lu Y, Huang X, Ruan YD, et al. An in situ element permeation constructed high endurance Li-LLZO interface at high current densities. J Mater Chem A. 2018; 6(39): 18853-18858.

[143]

Duan J, Wu WY, Nolan AM, et al. Lithium-graphite paste: an interface compatible anode for solid-state batteries. Adv Mater. 2019; 31(10): 1807243.

[144]

Tsai CL, Roddatis V, Chandran CV, et al. Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Appl Mater Inter. 2016; 8(16): 10617-10626.

[145]

Liu T, Ren YY, Shen Y, Zhao SX, Lin YH, Nan CW. Achieving high capacity in bulk-type solid-state lithium ion battery based on Li6.75La3Zr1.75Ta0.25O12 electrolyte: interfacial resistance. J Power Sources. 2016; 324: 349-357.

[146]

Xiao Y, Turcheniuk K, Narla A, et al. Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries. Nat Mater. 2021; 20(7): 984-990.

[147]

Fu KK, Gong YH, Liu BY, et al. Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci Adv. 2017; 3(4): e1601659.

[148]

Zhang WB, Schroder D, Arlt T, et al. (Electro) chemical expansion during cycling: monitoring the pressure changes in operating solid-state lithium batteries. J Mater Chem A. 2017; 5(20): 9929-9936.

[149]

McGrogan FP, Swamy T, Bishop SR, et al. Compliant yet brittle mechanical behavior of Li2S-P2S5 lithium-ion-conducting solid electrolyte. Adv Energy Mater. 2017; 7(12): 1602011.

[150]

Bucci G, Swamy T, Chiang Y-M, Carter WC. Modeling of internal mechanical failure of all-solid-state batteries during electrochemical cycling, and implications for battery design. J Mater Chem A. 2017; 5(36): 19422-19430.

[151]

Jin E, Tantratian K, Zhao C, et al. Ionic conductive and highly-stable interface for alkali metal anodes. Small. 2022; 18(33): e2203045.

[152]

Takada K, Ohta N, Zhang LQ, et al. Interfacial phenomena in solid-state lithium battery with sulfide solid electrolyte. Solid State Ion. 2012; 225: 594-597.

[153]

Takada K. Progress and prospective of solid-state lithium batteries. Acta Mater. 2013; 61(3): 759-770.

[154]

Zhu YZ, He XF, Mo YF. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl Mater Inter.2015; 7(42): 23685-23693.

[155]

Richards WD, Miara LJ, Wang Y, Kim JC, Ceder G. Interface stability in solid-state batteries. Chem Mater. 2016; 28(1): 266-273.

[156]

Nolan AM, Wachsman ED, Mo YF. Computation-guided discovery of coating materials to stabilize the interface between lithium garnet solid electrolyte and high-energy cathodes for all-solid-state lithium batteries. Energy Storage Mater. 2021; 41: 571-580.

[157]

Miara LJ, Richards WD, Wang YE, Ceder G. First-principles studies on cation dopants and electrolyte|cathode interphases for lithium garnets. Chem Mater. 2015; 27(11): 4040-4047.

[158]

Zhu YZ, He XF, Mo YF. First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries. J Mater Chem A. 2016; 4(9): 3253-3266.

[159]

Sang LZ, Bassett KL, Castro FC, et al. Understanding the effect of interlayers at the thiophosphate solid electrolyte/lithium Interface for all-solid-state Li batteries. Chem Mater. 2018; 30(24): 8747-8756.

[160]

Li XF, Liu J, Banis MN, et al. Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application. Energ Environ Sci. 2014; 7(2): 768-778.

[161]

Koc T, Hallot M, Quemin E, et al. Toward optimization of the chemical/electrochemical compatibility of halide solid electrolytes in all-solid-state batteries. ACS Energy Lett. 2022; 7(9): 2979-2987.

[162]

Bates JB, Dudney NJ, Neudecker BJ, Hart FX, Jun HP, Hackney SA. Preferred orientation of polycrystalline LiCoO2 films. J Electrochem Soc. 2000; 147(1): 59-70.

[163]

Takeuchi S, Tan HY, Bharathi KK, et al. Epitaxial LiCoO2 films as a model system for fundamental electrochemical studies of positive electrodes. ACS Appl Mater Inter. 2015; 7(15): 7901-7911.

[164]

Nishio K, Nakamura N, Horiba K, et al. Impact of the crystal orientation of positive electrodes on the Interface resistance across a solid electrolyte and electrode. ACS Appl Energ Mater. 2020; 3(7): 6416-6421.

[165]

Waqas M, Ali S, Chen DJ, et al. A robust bi-layer separator with Lewis acid-base interaction for high-rate capacity lithium-ion batteries. Compos Part B-Eng. 2019; 177: 107448.

[166]

Nolan AM, Zhu YZ, He XF, Bai Q, Mo YF. Computation-accelerated design of materials and interfaces for all-solid-state lithium-ion batteries. Joule. 2018; 2(10): 2016-2046.

[167]

Shi SQ, Gao J, Liu Y, et al. Multi-scale computation methods: their applications in lithium-ion battery research and development. Chinese Phys B. 2016; 25(1): 018212.

RIGHTS & PERMISSIONS

2025 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

167

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/