The Jahn–Teller distortion-induced electronic structure regulation of Mn-doped Co3O4 for enhanced acetone detection

Liang Zhao , Congcong Xin , Chengchao Yu , Yunpeng Xing , Zefeng Wei , Hongda Zhang , Teng Fei , Sen Liu , Haiyan Zhang , Tong Zhang

InfoMat ›› 2025, Vol. 7 ›› Issue (4) : e12634

PDF
InfoMat ›› 2025, Vol. 7 ›› Issue (4) :e12634 DOI: 10.1002/inf2.12634
RESEARCH ARTICLE

The Jahn–Teller distortion-induced electronic structure regulation of Mn-doped Co3O4 for enhanced acetone detection

Author information +
History +
PDF

Abstract

The modulation of the electronic structure of metal oxides is crucial to enhance their gas-sensing performance. However, there is lacking in profound study on the effect of electronic structure regulation on sensing performance. Herein, we propose an innovative strategy of Jahn–Teller distortion-induced electronic configuration regulation of Co3O4 to improve acetone sensing performance. After the introduction of Mn3+ into Co3O4 (Mn-Co3O4), the Jahn–Teller distortion of high-spin Mn3+ (t2g3eg1) conversed to low-spin Mn4+ (t2g3eg0), resulting in conversion of Co3+ (t2g6eg0) into Co2+ (t2g6eg1). As expected, Mn-Co3O4 exhibits a high response value of 46.7 toward 100 ppm acetone, low limit of detection of 0.75 ppb, high selectivity, and high stability, which are overwhelmingly superior to previous Co3O4-based acetone sensors. The dynamics and thermodynamics analysis demonstrate that the Mn doping improves sensing reaction rate, reduces reaction barrier, and promotes the charge transfer. The theoretical calculations further prove the charge transfer from Mn to Co derived from Jahn–Teller distortion and support promoting the adsorption of acetone on Co3O4 by Mn dopant. Moreover, we demonstrated the substantial potential application of Mn-Co3O4 sensor as a monitoring gas sensor in pest resistance of Arabidopsis. This work provides a new strategy to design sensing materials from electronic configuration perspective.

Keywords

acetone sensor / electronic structure / energy band structure / Jahn–Teller effect / Mn-doped Co3O4

Cite this article

Download citation ▾
Liang Zhao, Congcong Xin, Chengchao Yu, Yunpeng Xing, Zefeng Wei, Hongda Zhang, Teng Fei, Sen Liu, Haiyan Zhang, Tong Zhang. The Jahn–Teller distortion-induced electronic structure regulation of Mn-doped Co3O4 for enhanced acetone detection. InfoMat, 2025, 7(4): e12634 DOI:10.1002/inf2.12634

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kim D, Chong S, Park C, et al. Oxide/ZIF-8 hybrid nanofiber yarns: heightened surface activity for exceptional Chemiresistive sensing. Adv Mater. 2022; 34(10): 2105869.

[2]

Jeong S, Moon Y, Wang J, Lee J. Exclusive detection of volatile aromatic hydrocarbons using bilayer oxide chemiresistors with catalytic overlayers. Nat Commun. 2023; 14(1): 233.

[3]

Zhang Z, Jia C, Ma P, et al. Distance effect of single atoms on stability of cobalt oxide catalysts for acidic oxygen evolution. Nat Commun. 2024; 15(1): 1767.

[4]

Li R, Shi X, Huang Y, et al. Catalytic oxidation of formaldehyde on ultrathin Co3O4 nanosheets at room temperature: effect of enhanced active sites exposure on reaction path. Appl Catal B. 2022; 319: 121902.

[5]

Liu H, Li Q, Yao Z, et al. Origin of fracture-resistance to large volume change in Cu-substituted Co3O4 electrodes. Adv Mater. 2018; 30(4): 1704851.

[6]

Jiang Z, Tian M, Jing M, et al. Modulating the electronic metal-support interactions in single-atom Pt1−CuO catalyst for boosting acetone oxidation. Angew Chem Int Ed. 2022; 61(28): e202200763.

[7]

Jang J, Koo W, Choi S, Kim I. Metal organic framework-templated chemiresistor: sensing type transition from P-to-N using hollow metal oxide polyhedron via galvanic replacement. J Am Chem Soc. 2017; 139(34): 11868-11876.

[8]

D'Andria M, Krumeich F, Yao Z, Wang F, Güntner A. Structure-function relationship of highly reactive CuOx clusters on Co3O4 for selective formaldehyde sensing at low temperatures. Adv Sci. 2024; 11(10): 2308224.

[9]

Chen K, Xie W, Deng Y, et al. Alkaloid precipitant reaction inspired controllable synthesis of mesoporous tungsten oxide spheres for biomarker sensing. ACS Nano. 2023; 17(16): 15763-15775.

[10]

Song L, Ahn J, Xu L, Beak J, Shin E, Kim I. Facile synthesis of Co3O4/CoMoO4 heterostructure nanosheets for enhanced acetone detection. ACS Sens. 2022; 7(11): 3540-3550.

[11]

Ren Y, Zou Y, Liu Y, et al. Synthesis of orthogonally assembled 3D cross-stacked metal oxide semiconducting nanowires. Nat Mater. 2020; 19(2): 203-211.

[12]

Zhao L, Yu C, Xin C, et al. Increasing the catalytic activity of Co3O4 via boron doping and chemical reduction for enhanced acetone detection. Adv Funct Mater. 2024; 34(18): 2314174.

[13]

Kim D, Cha J, Chong S, et al. Flash-thermal shock synthesis of single atoms in ambient air. ACS Nano. 2023; 17(23): 23347-23358.

[14]

Yang X, Deng Y, Yang H, et al. Modulating Ti t2g orbital occupancy in a Cu/TiO2 composite for selective photocatalytic CO2 reduction to COFunctionalization of mesoporous semiconductor metal oxides for gas sensing: recent advances and emerging challenges. Adv Sci. 2023; 10: 2204810.

[15]

Chen J, Xiong S, Liu H, et al. Reverse oxygen spillover triggered by CO adsorption on Sn-doped Pt/TiO2 for low-temperature CO oxidation. Nat Commun. 2023; 14(1): 3477.

[16]

Yu Q, Li C, Zhao J, et al. Efficient photothermal catalytic oxidation of toluene by La1-Fe MnO3 with full spectrum response: the effects of Fe doping and photoactivation. Appl Catal B. 2023; 327: 122441.

[17]

Cao Z, Ge Y, Wang W, et al. Chemical discrimination of benzene series and molecular recognition of the sensing process over Ti-doped Co3O4. ACS Sens. 2022; 7(6): 1757-1765.

[18]

Song L, Xu L, Ahn J, Beak J, Kim I. Surface modulation of Co3O4 yolk-shell spheres with tungsten doping for superior acetone sensitivity. ACS Sens. 2023; 8(9): 3417-3427.

[19]

Zhu K, Zhu Q, Jiang M, et al. Modulating Ti t2g orbital occupancy in a Cu/TiO2 composite for selective photocatalytic CO2 reduction to CO. Angew Chem Int Ed. 2022; 61(34): e202207600.

[20]

Wang X, Yin L, Ronne A, et al. Stabilizing lattice oxygen redox in layered sodium transition metal oxide through spin singlet state. Nat Commun. 2023; 14(1): 7665.

[21]

Ke Q, Yi D, Jin Y, et al. Manganese doping in cobalt oxide nanorods promotes catalytic dehydrogenation. ACS Sustain Chem Eng. 2020; 8(14): 5734-5741.

[22]

Zhou Y, Sun S, Xi S, et al. Superexchange effects on oxygen reduction activity of edge-sharing [CoxMn1−xO6] octahedra in spinel oxide. Adv Mater. 2018; 30(11): 1705407.

[23]

Asl H, Manthiram A. Proton-induced disproportionation of Jahn-Teller-active transition-metal ions in oxides due to electronically driven lattice instability. J Am Chem Soc. 2020; 142: 21122.

[24]

Kim W, Smeaton M, Jia C, et al. Geometric frustration of Jahn-Teller order in the infinite-layer lattice. Nature. 2023; 615(7951): 237-243.

[25]

An L, Li Y, Luo M, et al. Atomic-level coupled interfaces and lattice distortion on CuS/NiS2 nanocrystals boost oxygen catalysis for flexible Zn-air batteries. Adv Funct Mater. 2017; 27(42): 1703779.

[26]

Sakamoto M, Hada M, Ota W, Uesugi F, Sato T. Localised surface plasmon resonance inducing cooperative Jahn-Teller effect for crystal phase-change in a nanocrystal. Nat Commun. 2023; 14(1): 4471.

[27]

Waters M, Ng Z, Monahan N, Wörner H. Ultrafast imaging of the Jahn-Teller topography in carbon tetrachloride. J Am Chem Soc. 2023; 145(13): 7659-7666.

[28]

Deng S, Tie Z, Yue F, Cao H, Yao M, Niu Z. Rational design of ZnMn2O4 quantum dots in a carbon framework for durable aqueous zinc-ion batteries. Angew Chem Int Ed. 2022; 61(12): e202115877.

[29]

Gao Z, Zhao Z, Wang H, et al. Jahn-Teller distortions induced by in situ Li migration in λ-MnO2 for boosting electrocatalytic nitrogen fixation. Angew Chem Int Ed. 2024; 163: e202318967.

[30]

Zhu X, Meng F, Zhang Q, et al. LiMnO2 cathode stabilized by interfacial orbital ordering for sustainable lithium-ion batteries. Nat Sustain. 2021; 4: 392.

[31]

Yao S, Wang S, Liu Y, et al. High flux and stability of cationic intercalation in transition-metal oxides: unleashing the potential of Mn t2g orbital via enhanced π-donation. J Am Chem Soc. 2023; 145(49): 26699-26710.

[32]

Hou Z, Wang J, Dai N, et al. Eliminating the Mn 3D orbital degeneracy to suppress the Jahn-Teller distortion for stable MnO2 cathode. Adv Energy Mater. 2024; 14(6): 2302477.

[33]

Wang H, Hung S, Chen H, Chan T, Chen H, Liu B. In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4. J Am Chem Soc. 2016; 138(1): 36-39.

[34]

Park S, Jin K, Lim H, et al. Spectroscopic capture of a low-spin Mn(IV)-oxo species in Ni-Mn3O4 nanoparticles during water oxidation catalysis. Nat Commun. 2020; 11(1): 5230.

[35]

Zhou Y, Sun S, Wei C, et al. Significance of engineering the octahedral units to promote the oxygen evolution reaction of spinel oxides. Adv Mater. 2019; 31(41): 1902509.

[36]

Li J, Chu D, Dong H, Baker D, Jiang R. Boosted oxygen evolution reactivity by igniting double exchange interaction in spinel oxides. J Am Chem Soc. 2020; 142(1): 50-54.

[37]

Bae J, Shin D, Jeong H, et al. Facet-dependent Mn doping on shaped Co3O4 crystals for catalytic oxidation. ACS Catal. 2021; 11(17): 11066.

[38]

Zhao G, Hai G, Zhou P, et al. Electrochemical oxidation of 5-hydroxymethylfurfural on CeO2-modified Co3O4 with regulated intermediate adsorption and promoted charge transfer. Adv Funct Mater. 2023; 33: 2213170.

[39]

Yu L, Shi X, Mao Y, et al. Simultaneously boosting thermoelectric and mechanical properties of n-type Mg3Sb1.5Bi0.5-based Zintls through energy-band and defect engineering. ACS Nano. 2024; 18(2): 1678-1689.

[40]

Jabłońska M, Nothdurft K, Nocuń M, Girman V, Palkovits R. Redox-performance correlations in Ag-Cu-Mg-Al, Ce-Cu-Mg-Al, and Ga-Cu-Mg-Al hydrotalcite derived mixed metal oxides. Appl Catal B. 2017; 207: 385-396.

[41]

Chen W, Han B, Tian C, et al. MOFs-derived ultrathin holey Co3O4 nanosheets for enhanced visible light CO2 reduction. Appl Catal B. 2019; 244: 996-1003.

[42]

Chen S, Guo Y, Zhang J, Guo Y, Liang X. CuFe2O4/activated carbon adsorbents enhance H2S adsorption and catalytic oxidation from humidified air at room temperature. Chem Eng J. 2022; 431: 134097.

[43]

Yusuf J, Soleimani H, Chuan L, Sanusi Y, Adebayo L. Physicochemical properties and microwave absorption performance of Co3O4 and banana peel-derived porous activated carbon composite at X-band frequency. J Alloys Compd. 2021; 888: 161474.

[44]

Lukashuk L, Yigit N, Rameshan R, et al. Operando insights into CO oxidation on cobalt oxide catalysts by NAP-XPS, FTIR, and XRD. ACS Catal. 2018; 8(9): 8630-8641.

[45]

Lourenço A, Silva V, Silva R, et al. Metal-organic frameworks as template for synthesis of Mn3+/Mn4+ mixed valence manganese cobaltites electrocatalysts for oxygen evolution reaction, (Pt A). J Colloid Interface Sci. 2021; 582: 124-136.

[46]

Shen L, Wang Y, Chen J, et al. A RuCoBO nanocomposite for highly efficient and stable electrocatalytic seawater splitting. Nano Lett. 2023; 23(3): 1052-1060.

[47]

Liu Y, Zheng Y, Feng D, et al. Efficient selective oxidation of aromatic alkanes by double cobalt active sites over oxygen vacancy-rich mesoporous Co3O4. Angew Chem Int Ed. 2023; 62(29): e202306261.

[48]

Zeng L, Zhao Z, Lv F, et al. Anti-dissolution Pt single site with Pt(OH)(O3)/Co(P) coordination for efficient alkaline water splitting electrolyzer. Nat Commun. 2022; 13(1): 3822.

[49]

Hu H, He H, Xie R, et al. Achieving reversible Mn2+/Mn4+ double redox couple through anionic substitution in a P2-type layered oxide cathode. Nano Energy. 2022; 99: 107390.

[50]

Zhang Y, Jiang Y, Yuan Z, et al. Synergistic effect of electron scattering and space charge transfer enabled unprecedented room temperature NO2 sensing response of SnO2. Small. 2023; 19(48): 2303631.

[51]

Zhang Q, Yang P, Zhang H, et al. Oxygen vacancies in Co3O4 promote CO2 photoreduction. Appl Catal B. 2022; 300: 120729.

[52]

Tian Q, Wang W, Cao L, et al. Multifaceted catalytic ROS-scavenging via electronic modulated metal oxides for regulating stem cell fate. Adv Mater. 2022; 34(43): 2207275.

[53]

Sun H, Tang X, Li S, Yao Y, Liu L. MOF-derived one-dimensional Ru/Mo co-doped Co3O4 hollow microtubes for high-performance triethylamine sensing. Sens Actuators B. 2023; 383: 133583.

[54]

Wang Y, Wang S, Bai J, et al. Structural evolution in LaCoO3 by polyol treatment: highly active and resistant Co3O4/La2O2CO3/LaCoO3 heterostructure catalysts for CH4 oxidation. Appl Catal B. 2023; 338: 123079.

[55]

Bulavchenko O, Afonasenko T, Ivanchikova A, et al. In situ study of reduction of MnxCo3-xO4 mixed oxides: the role of manganese content. Inorg Chem. 2021; 60(21): 16518-16528.

[56]

Guo C, Tang Y, Yang Z, et al. Reinforcing the efficiency of photothermal catalytic CO2 methanation through integration of Ru nanoparticles with photothermal MnCo2O4 nanosheets. ACS Nano. 2023; 17(23): 23761-23771.

[57]

Zhao Q, Zheng Y, Song C, et al. Novel monolithic catalysts derived from in-situ decoration of Co3O4 and hierarchical Co3O4@MnOx on Ni foam for VOC oxidation. Appl Catal B. 2020; 265: 118552.

[58]

Liu Y, Peng Y, Naschitzki M, et al. Surface oxygen vacancies on reduced Co3O4(100): superoxide formation and ultra-low-temperature CO oxidation. Angew Chem Int Ed. 2021; 60(30): 16514-16520.

[59]

Zhu Y, Zhao Y, Ma J, et al. Mesoporous tungsten oxides with crystalline framework for highly sensitive and selective detection of foodborne pathogens. J Am Chem Soc. 2017; 139(30): 10365-10373.

[60]

Song Y, Shim Y, Suh J, et al. Ionic-activated chemiresistive gas sensors for room-temperature operation. Small. 2019; 15(40): 1902065.

[61]

Liu D, Pervaiz E, Adimi S, et al. Theoretical study on W-Co3O4(111) surface: acetone adsorption and sensing mechanism. Appl Surf Sci. 2021; 566: 150642.

[62]

Lee C, Strano M. Understanding the dynamics of signal transduction for adsorption of gases and vapors on carbon nanotube sensors. Langmuir. 2005; 21(11): 5192-5196.

[63]

Park S, Jeon S, Kim H, et al. Imparting metal oxides with high sensitivity toward light-activated NO2 detection via tailored interfacial chemistry. Adv Funct Mater. 2023; 33: 2214008.

[64]

Luo N, Cai H, Lu B, Xue Z, Xu J. Pt-functionalized amorphous RuOx as excellent stability and high-activity catalysts for low temperature MEMS sensors. Small. 2023; 19: 2300006.

[65]

Lou Y, Ma J, Cao X, et al. Promoting effects of In2O3 on Co3O4 for CO oxidation: tuning O2 activation and CO adsorption strength simultaneously. ACS Catal. 2014; 4(11): 4143-4152.

[66]

Barreca D, Massignan C. Composition and microstructure of cobalt oxide thin films obtained from a novel cobalt(II) precursor by chemical vapor deposition. Chem Mater. 2001; 13(2): 588-593.

[67]

Wu J, Han X, Li D, et al. Efficient CO2 conversion to formic acid in a novel microbial photoelectrochemical cell using a visible-light responsive Co3O4 nanorod-arrayed photocathode. Appl Catal B. 2020; 276: 119102.

[68]

Chen X, Liu L, Yu P, Mao S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science. 2011; 331(6018): 746-750.

[69]

George S, Pokhrel S, Ji Z, et al. Role of Fe doping in tuning the band gap of TiO2 for the photo-oxidation-induced cytotoxicity paradigm. J Am Chem Soc. 2011; 133(29): 11270-11278.

[70]

Sun W, Ji H, Li L, et al. Built-in electric field triggered interfacial accumulation effect for efficient nitrate removal at ultra-low concentration and electroreduction to ammonia. Angew Chem Int Ed. 2021; 60(42): 22933-22939.

[71]

Song L, Zhang H, Xiong J, et al. Doped Mn modulates the local charge distribution of cobalt-based spinel catalysts to promote the availability of ligand lattice oxygen for complete oxidation of methane. Appl Catal B. 2024; 343: 123547.

[72]

Ma Z, Liu X, Wang X, et al. Manipulating the d-band center enhances photoreduction of CO2 to CO in Zn2GeO4 nanorods. Chem Eng J. 2023; 468: 143569.

[73]

Li Y, Wei B, Zhu M, et al. Synergistic effect of atomically dispersed Ni-Zn pair sites for enhanced CO2 electroreduction. Adv Mater. 2021; 33(41): 2102212.

[74]

Yao Y, Hu S, Chen W, et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat Catal. 2019; 2(4): 304-313.

[75]

Yang C, Guo K, Yuan D, Cheng J, Wang B. Unraveling reaction mechanisms of Mo2C as cathode catalyst in a Li-CO2 battery. J Am Chem Soc. 2020; 142(15): 6983-6990.

[76]

Kang M, Wu H, Liu H, et al. The pan-genome and local adaptation of Arabidopsis thaliana. Nat Commun. 2023; 14(1): 6259.

[77]

Gong J, Wang Z, Guo Z, et al. DORN1 and GORK regulate stomatal closure in Arabidopsis mediated by volatile organic compound ethyl vinyl ketone. Int J Biol Macromol. 2023; 231: 123503.

[78]

Poecke V, Posthumus M, Dicke M. Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: Chemical, behavioral, and gene-expression analysis. J Chem Ecol. 2001; 27: 1911-1928.

[79]

Gong J, Yao L, Jiao C, et al. Ethyl vinyl ketone activates K+ efflux to regulate stomatal closure by MRP4-dependent eATP accumulation working upstream of H2O2 burst in Arabidopsis. Mol Sci. 2022; 23(16): 9002.

RIGHTS & PERMISSIONS

2024 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

92

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/