Polycyclization decorated organoboron emitters with hetero[8]helicenes electronic structure for highly-efficient and stable narrowband circularly polarized electroluminescence

Chenglong Li , Jianping Zhou , Hengyi Dai , Meng Li , Dongdong Zhang , Lian Duan

InfoMat ›› 2025, Vol. 7 ›› Issue (4) : e12652

PDF
InfoMat ›› 2025, Vol. 7 ›› Issue (4) :e12652 DOI: 10.1002/inf2.12652
RESEARCH ARTICLE

Polycyclization decorated organoboron emitters with hetero[8]helicenes electronic structure for highly-efficient and stable narrowband circularly polarized electroluminescence

Author information +
History +
PDF

Abstract

Multiresonance organoboron helicenes are promising narrowband circularly polarized luminescence (CPL) emitters, which, however, still face formidable challenges to balance a large luminescence dissymmetry factor (glum) and a high luminescence efficiency. Here, two pairs of organoboron enantiomers (P/M-BN[8]H-ICz and P/M-BN[8]H-BO) with the same hetero[8]helicene geometric structures are developed through polycyclization decoration. We find that it is the helicity of helicene electronic structures rather than the geometrical one that determines the molecular dissymmetry property as a larger electronic helicity could enhance the electron-orbital coupling of the helicene structure. Therefore, P/M-BN[8]H-BO who possesses a hetero[8]helicene electronic structure realizes a nearly one-order-of-magnitude higher glum (+2.75/−2.52 × 10–3) and a higher photoluminescence quantum yield (PLQY) of 99% compared with P/M-BN[8]H-ICz bearing only a hetero[6]helicene electronic distribution structure (glum of only +2.41/−2.37 ×  10–4 and PLQY of 95%). Moreover, BN[8]H-BO exhibits a narrowband green emission peaking at 538 nm with a full-width at half-maxima of merely 34 nm, narrower than most multiresonance CPL helicenes. The corresponding organic light-emitting diodes simultaneously realize a high external quantum efficiency of 31.7%, an electroluminescence dissymmetry factors (gEL) of +5.23/−5.07 × 10–3, and an extremely long LT95 (time to 95% of the initial luminance) of over 731 h at an initial luminance of 1000 cd m–2.

Keywords

circularly polarized electroluminescence / hetero[8]helicene / multi-resonance / operational stability / organic light-emitting diode

Cite this article

Download citation ▾
Chenglong Li, Jianping Zhou, Hengyi Dai, Meng Li, Dongdong Zhang, Lian Duan. Polycyclization decorated organoboron emitters with hetero[8]helicenes electronic structure for highly-efficient and stable narrowband circularly polarized electroluminescence. InfoMat, 2025, 7(4): e12652 DOI:10.1002/inf2.12652

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

(a) Wan L, Liu Y, Fuchter MJ, Yan B. Anomalous circularly polarized light emission in organic light-emitting diodes caused by orbital-momentum locking. Nat Photon. 2023; 17(2): 193-199. (b) Yang Y, da Costa RC, Smilgies D-M, Campbell AJ, Fuchter MJ. Induction of Circularly Polarized Electroluminescence from an Achiral Light-Emitting Polymer via a Chiral Small-Molecule Dopant. Adv Mater. 2013; 25(18): 2624-2628.

[2]

(a) Brandt JR, Salerno F, Fuchter MJ. The added value of small-molecule chirality in technological applications. Nat Rev Chem. 2017; 1(6): 0045. (b) Zhang D-W, Li M, Chen C-F. Recent advances in circularly polarized electroluminescence based on organic light-emitting diodes. Chem Soc Rev. 2020; 49(5): 1331-1343.

[3]

(a) Han J, Guo S, Lu H, Liu S, Zhao Q, Huang W. Recent Progress on Circularly Polarized Luminescent Materials for Organic Optoelectronic Devices. Adv Opt Mater. 2018; 6(17): 1800538. (b) Sang Y, Han J, Zhao T, Duan P, Liu M. Circularly polarized luminescence in nanoassemblies: generation, amplification, and application. Adv Mater. 2020; 32(41): 1900110. (c) Yang Y, da Costa RC, Fuchter MJ, Campbell AJ. Circularly polarized light detection by a chiral organic semiconductor transistor. Nat Photon. 2013; 7(8): 634-638.

[4]

(a) Brandt JR, Wang X, Yang Y, Campbell AJ, Fuchter MJ.Circularly Polarized Phosphorescent Electroluminescence with a High Dissymmetry Factor from PHOLEDs Based on a Platinahelicene. J Am Chem Soc. 2016; 138(31): 9743-9746. (b) Dhbaibi K, Abella L, Meunier-Della-Gatta S, et al. Achieving high circularly polarized luminescence with push–pull helicenic systems: from rationalized design to top-emission CPOLED applications. Chem Sci. 2021; 12(15): 5522-5533. (c) Kulkarni C, van Son MHC, Di Nuzzo D, Meskers SCJ, Palmans ARA, Meijer EW. Molecular design principles for achieving strong chiroptical properties of fluorene copolymers in thin films. Chem Mater. 2019; 31(17): 6633-6641. (d) Muthig AMT, Mrózek O, Ferschke T, et al. Mechano-stimulus and environment-dependent circularly polarized TADF in chiral copper(I) complexes and their application in OLEDs. J Am Chem Soc. 2023; 145(8): 4438-4449. (e) Wan L, Wade J, Wang X, Campbell AJ, Fuchter MJ. Engineering the sign of circularly polarized emission in achiral polymer—chiral small molecule blends as a function of blend ratio. J Mater Chem C. 2022; 10(13): 5168-5172. (f) Yang S-Y, Wang Y-K, Peng C-C, et al. Circularly Polarized Thermally Activated Delayed Fluorescence Emitters in Through-Space Charge Transfer on Asymmetric Spiro Skeletons. J Am Chem Soc. 2020; 142(41): 17756-17765.

[5]

(a) Xing S, Zhong X-S, Liao X-J, et al. Axially Chiral Multiple Resonance Thermally ActivatedDelayed Fluorescence Enantiomers for Efficient CircularlyPolarized Electroluminescence. Adv Opt Mater. 2024; 12(22): 2400685. (b) Yuan L, Yang Y-F, Yan Z-P, et al. Circularly Polarized Electroluminescence from Intrinsically Axial Chiral Materials Based on Bidibenzo[b,d] furan/bidibenzo[b,d]thiophene. Adv Funct Mater. 2024; 34(46): 2403803. (c) Chen Z, Zhong C, Han J, et al. High-performance circularly polarized electroluminescence with simultaneous narrowband emission, high efficiency, and large dissymmetry factor. Adv Mater. 2022; 34(17): 2109147. (d) Huang H, Li N, Li W, et al. Synergistic Modulation of Excited State Ingredients and Chiroptical Activity for High-Performance Pure-Green Circularly Polarized Electroluminescence. Adv Funct Mater. 2024; 34(39): 2403191.

[6]

(a) Liao X-J, Pu D, Yuan L, et al. Planar Chiral Multiple Resonance Thermally Activated Delayed Fluorescence Materials for Efficient Circularly Polarized Electroluminescence. Angew Chem Int ed. 2023; 62(6): e202217045. (b) Song S-Q, Han X, Huo Z-Z, et al. Chiral multiple-resonance thermally activated delayed fluorescence materials based on chiral spiro-axis skeleton for efficient circularly polarized electroluminescence. Sci China Chem. 2024; 67(7): 2257-2264. (c) Xu Y, Wang Q, Cai X, Li C, Wang Y. Highly Efficient Electroluminescence from Narrowband Green Circularly Polarized Multiple Resonance Thermally Activated Delayed Fluorescence Enantiomers. Adv Mater. 2021; 33(21): 2100652. (d) Yan Z-P, Yuan L, Zhang Y, et al. A Chiral Dual-Core Organoboron Structure Realizes Dual-Channel Enhanced Ultrapure Blue Emission and Highly Efficient Circularly Polarized Electroluminescence. Adv Mater. 2022; 34(36): 2204253. (e) Yang Y, Li N, Miao J, et al. Chiral Multi-Resonance TADF Emitters Exhibiting Narrowband Circularly Polarized Electroluminescence with an EQE of 37.2%. Angew Chem Int Ed. 2022; 61(30): e202202227. (f) Luo X-F, Song S-Q, Wu X, Yip C-F, Cai S, Zheng Y-X. A chiral spirofluorene-embedded multiple-resonance thermally activated delayed fluorescence emitter for efficient pure-green circularly polarized electroluminescence. Aggregate. 2024; 5(2): e445.

[7]

(a) Li J-K, Zhang M-Y, Zeng L, Huang L, Wang X-Y. NIR-Absorbing B,N-Heteroarene as Photosensitizer for High-Performance NIR-to-Blue Triplet-Triplet Annihilation Upconversion. Angew Chem Int Ed. 2023; 62(25): e202303093. (b) Zhang Y, Zhang D, Huang T, et al. Multi-Resonance Deep-Red Emitters with Shallow Potential-Energy Surfaces to Surpass Energy-Gap Law**. Angew Chem Int Ed. 2021; 60(37): 20498-20503. (c) Yang S-Y, Zou S-N, Kong F-C, et al. A narrowband blue circularly polarized thermally activated delayed fluorescence emitter with a hetero-helicene structure†. Chem Commun. 2021; 57(84): 11041-11044. (d) Zhang F, Rauch F, Swain A, Marder TB, Ravat P. Efficient Narrowband Circularly Polarized Light Emitters Based on 1,4-B,N-embedded Rigid Donor–Acceptor Helicenes. Angew Chem Int Ed. 2023; 62(16): e202218965.

[8]

(a) Li J-K, Chen X-Y, Guo Y-L, et al. B,N-Embedded Double Hetero[7]helicenes with Strong Chiroptical Responses in the Visible Light Region. J Am Chem Soc. 2021; 143(43): 17958-17963. (b) Meng G, Zhou J, Han X-S, et al. B-N Covalent Bond Embedded Double Hetero-[n]helicenes for Pure Red Narrowband Circularly Polarized Electroluminescence with High Efficiency and Stability. Adv Mater. 2024; 36(5): 2307420. (c) Yuan L, Tu Z-L, Xu J-W, et al. Color-tunable circularly polarized electroluminescence from a helical chiral multiple resonance emitter with B-N bonds. Sci China Chem. 2023; 66(9): 2612-2620.

[9]

Wu X, Huang J-W, Su B-K, et al. Fabrication of circularly polarized MR-TADF emitters with asymmetrical peripheral-lock enhancing helical B/N-doped Nanographenes. Adv Mater. 2022; 34(1): 2105080.

[10]

Yang W, Li N, Miao J, et al. Simple double hetero[5]helicenes realize highly efficient and narrowband circularly polarized organic light-emitting diodes. CCS Chem. 2022; 4(11): 3463-3471.

[11]

Wang Q, Yuan L, Qu C, et al. Constructing highly efficient circularly polarized multiple-resonance thermally activated delayed fluorescence materials with intrinsically helical chirality. Adv Mater. 2023; 35(42): 2305125.

[12]

Guo W-C, Zhao W-L, Tan K-K, Li M, Chen C-F. B,N-embedded hetero[9]helicene toward highly efficient circularly polarized electroluminescence. Angew Chem Int Ed. 2024; 63(18): e202401835.

[13]

(a) Mori T. Chiroptical properties of symmetric double, triple, and multiple helicenes. Chem Rev. 2021; 121(4): 2373-2412. (b) Arrico L, Di Bari L, Zinna F. Quantifying the Overall Efficiency of Circularly Polarized Emitters. Chem A Eur J. 2021; 27(9): 2920-2934.

[14]

(a) Chen Z, Huang M, Zhong C, et al. Cascade chirality transfer through diastereomeric interaction enables efficient circularly polarized electroluminescence. Adv Funct Mater. 2023; 33(21): 2215179. (b) Sun B, Ding L, Wang X, Tu Z-L, Fan J. Circularly polarized thermally activated delayed fluorescence OLEDs with nearly BT.2020 red emission. Chem Eng J. 2023; 476: 146511. (c) Tong J, Wang P, Liao X-J, Wang Y, Zheng Y-X, Pan Y. Chiral sulfonyl binaphthalene-based thermally activated delayed fluorescence materials for circularly polarized electroluminescence. Adv Opt Mater. 2024; 12(13): 2302730. (d) Wang Y-F, Li M, Teng J-M, Zhou H-Y, Chen C-F. High-Performance Solution-Processed Nondoped Circularly Polarized OLEDs with Chiral Triptycene Scaffold-Based TADF Emitters Realizing Over 20% External Quantum Efficiency. Adv Funct Mater. 2021; 31(49): 2106418.

[15]

Xu Y, Cheng Z, Li Z, et al. Molecular-structure and device-configuration optimizations toward highly efficient green electroluminescence with narrowband emission and high color purity. Adv Opt Mater. 2020; 8(9): 1902142.

[16]

(a) Lee HL, Jeon SO, Kim I, et al. Multiple-Resonance Extension and Spin-Vibronic-Coupling-Based Narrowband Blue Organic Fluorescence Emitters with Over 30% Quantum Efficiency. Adv Mater. 2022; 34(33): 2202464. (b) Luo X-F, Song S-Q, Ni H-X, et al. Multiple-Resonance-Induced Thermally Activated Delayed Fluorescence Materials Based on Indolo [3,2,1-jk]carbazole with an Efficient Narrowband Pure-Green Electroluminescence. Angew Chem Int Ed. 2022; 61(41): e202209984. (c) Meng G, Dai H, Wang Q, et al. High-efficiency and stable short-delayed fluorescence emitters with hybrid long- and short-range charge-transfer excitations. Nat Commun. 2023; 14(1): 2394. (d) Park J, Moon J, Jo U, et al. Boron- and silane-based electron transport–type host materials for long-lifetime blue phosphorescent organic light-emitting diodes. Adv Opt Mater. 2024; 12(13): 2302791. (e) Wan L, Cheng Z, Liu F, Lu P. Recent advances and prospects for organoboron-based thermally activated delayed fluorescence emitters. Mater Chem Front. 2023; 7(19): 4420-4444. (f) Wei J, Zhang C, Zhang D, et al. Indolo[3,2,1-jk]carbazole Embedded Multiple-Resonance Fluorophors for Narrowband Deep-blue Electroluminescence with EQE≈34.7 % and CIEy≈0.085. Angew Chem Int Ed. 2021; 60(22): 12269-12273. (g) Zeng X, Wang L, Dai H, et al. Orbital Symmetry Engineering in Fused Polycyclic Heteroaromatics toward Extremely Narrowband Green Emissions with an FWHM of 13 nm. Adv Mater. 2023; 35(22): 2211316.

[17]

(a) Chen C, Du C-Z, Wang X-Y. The Rise of 1,4-BN-Heteroarenes: Synthesis, Properties, and Applications. Adv Sci. 2022; 9(19): 2200707. (b) Hatakeyama T, Shiren K, Nakajima K, et al. Ultrapure blue thermally activated delayed fluorescence molecules: efficient HOMO–LUMO separation by the multiple resonance effect. Adv Mater. 2016; 28(14): 2777-2781. (c) Kim HJ, Yasuda T. Narrowband emissive thermally activated delayed fluorescence materials. Adv Opt Mater. 2022; 10(22): 2201714. (d) Suresh SM, Hall D, Beljonne D, Olivier Y, Zysman-Colman E. Multiresonant Thermally Activated Delayed Fluorescence Emitters Based on Heteroatom-Doped Nanographenes: Recent Advances and Prospects for Organic Light-Emitting Diodes. Adv Funct Mater. 2020; 30(33): 1908677.

[18]

Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem. 2012; 33(5): 580-592.

[19]

Gong Z-L, Zhu X, Zhou Z, et al. Frontiers in circularly polarized luminescence: molecular design, self-assembly, nanomaterials, and applications. Sci China Chem. 2021; 64(12): 2060-2104.

[20]

(a) Fernández-García JM, Izquierdo-García P, Buendía M, Filippone S, Martín N. Synthetic chiral molecular nanographenes: the key figure of the racemization barrier. Chem Commun. 2022; 58(16): 2634-2645. (b) Janke RH, Haufe G, Würthwein E-U, Borkent JH. Racemization Barriers of Helicenes: A Computational Study1. J Am Chem Soc. 1996; 118(25): 6031-6035.

[21]

(a) Hu Y, Paternò GM, Wang X-Y, et al. π-Extended Pyrene-Fused Double [7]Carbohelicene as a Chiral Polycyclic Aromatic Hydrocarbon. J Am Chem Soc. 2019; 141(32): 12797-12803. (b) Qiu Z, Ju C-W, Frédéric L, et al. Amplification of dissymmetry factors in π-extended[7]- and [9]helicenes. J Am Chem Soc. 2021; 143(12): 4661-4667. (c) Sun Z, Yi C, Liang Q, et al. π-Extended C2-Symmetric Double NBN-Heterohelicenes with Exceptional Luminescent Properties. Org Lett. 2020; 22(1): 209-213.

[22]

Zhong X-S, Yuan L, Liao X-J, et al. Circularly polarized organic light-emitting diodes based on chiral hole transport enantiomers. Adv Mater. 2024; 36(18): 2311857.

RIGHTS & PERMISSIONS

2025 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

80

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/