M-site dependent terahertz intrinsic absorption in MXenes

Yang Fei , Qiuxiang Wang , Feng Wang , Guozheng Zhang , Min Hu , Tianpeng Ding , Tao Zhao , Xu Xiao

InfoMat ›› 2025, Vol. 7 ›› Issue (4) : e12654

PDF
InfoMat ›› 2025, Vol. 7 ›› Issue (4) :e12654 DOI: 10.1002/inf2.12654
RESEARCH ARTICLE

M-site dependent terahertz intrinsic absorption in MXenes

Author information +
History +
PDF

Abstract

Ultrathin terahertz (THz) absorbing films are critical as building blocks for THz devices and systems. Although few-layer Ti3C2Tx MXene assemblies have approached the terahertz (THz) intrinsic absorption limit, it remains important to explore the THz intrinsic absorbing properties of other MXenes, which may elucidate the mechanism of THz-matter interactions for the future guidance of material design. In this study, eight representative MXenes with different M-sites were systematically analyzed. Surprisingly, the Ti2CTx thin film with direct current (DC) conductivity 26 times lower than that of the Ti3C2Tx film possessed similar high THz absorbing properties. Due to the significantly lower electron concentration of Ti2CTx compared to that of Ti3C2Tx, we concluded that the exceptional THz intrinsic absorption of Ti2CTx stemmed from its high terahertz electron mobility (μTHz), which was attributed to its low electron effective mass (m*). Because the THz intrinsic absorption was determined by THz conductivity, which was proportional to the ratio of electron density (n) to electron effective mass (m*), we proposed that optimizing n/m* was crucial for achieving high THz intrinsic absorption in MXenes. This study not only explored the underlying THz-matter interaction mechanism in MXenes but also provided guidance for designing high THz absorption materials.

Keywords

conductivity / electron effective mass / MXene / terahertz absorption / terahertz mobility

Cite this article

Download citation ▾
Yang Fei, Qiuxiang Wang, Feng Wang, Guozheng Zhang, Min Hu, Tianpeng Ding, Tao Zhao, Xu Xiao. M-site dependent terahertz intrinsic absorption in MXenes. InfoMat, 2025, 7(4): e12654 DOI:10.1002/inf2.12654

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dang S, Amin O, Shihada B, Alouini MS. What should 6G be? Nat Electron. 2020; 3(1): 20-29.

[2]

Fei W, Trommer J, Lemme MC, Mikolajick T, Heinzig A. Emerging reconfigurable electronic devices based on two-dimensional materials: a review. InfoMat. 2022; 4(10): e12355.

[3]

Liu B, Zhang X, Du J, et al. Synergistic-engineered van der Waals photodiodes with high efficiency. InfoMat. 2022; 4(3): e12282.

[4]

Kyriacou GA. Oxide electronics for 5G and 6G. Nat Electron. 2021; 4(10): 705-706.

[5]

Huang Z, Chen H, Xu S, et al. Graphene-based composites combining both excellent terahertz shielding and stealth performance. Adv Opt Mater. 2018; 6(23): 1801165.

[6]

Cheng Z, Cao Y, Wang R, Liu X, Fan F, Huang Y. Multifunctional MXene-based composite films with simultaneous terahertz/gigahertz wave shielding performance for future 6G communication. J Mater Chem A Mater. 2023; 11(11): 5593-5605.

[7]

Zhao T, Xie P, Wan H, et al. Ultrathin MXene assemblies approach the intrinsic absorption limit in the 0.5-10 THz band. Nat Photon. 2023; 17(7): 622-628.

[8]

Wan H, Liu N, Tang J, Wen Q, Xiao X. Substrate-independent Ti3C2Tx MXene waterborne paint for terahertz absorption and shielding. ACS Nano. 2021; 15(8): 13646-13652.

[9]

Li B, Tian H, Li L, et al. Graphene-assisted assembly of electrically and magnetically conductive ceramic nanofibrous aerogels enable multifunctionality. Adv Funct Mater. 2024; 34(22): 2314653.

[10]

Li D, Zhang W, Suo P, et al. Ultrafast dynamics of defect-assisted auger process in PdSe2 films: synergistic interaction between defect trapping and auger effect. J Phys Chem Lett. 2022; 13(12): 2757-2764.

[11]

Wu L, Brahlek M, Valdés Aguilar R, et al. A sudden collapse in the transport lifetime across the topological phase transition in (Bi1−xInx)2Se3. Nat Phys. 2013; 9(7): 410-414.

[12]

Dai Z, Manjappa M, Yang Y, et al. High mobility 3D Dirac semimetal (Cd3As2) for ultrafast photoactive terahertz photonics. Adv Funct Mater. 2021; 31(17): 2011011.

[13]

Chanana A, Lotfizadeh N, Condori Quispe HO, et al. Manifestation of kinetic inductance in terahertz Plasmon resonances in thin-film Cd3As2. ACS Nano. 2019; 13(4): 4091-4100.

[14]

Qiao J, Song Q, Xuan L, et al. Dual cross-linked magnetic MXene aerogel with high strength and durability enables multifunctionality. Adv Funct Mater. 2024; 34(33): 2401687.

[15]

Zheng S, Xu W, Liu J, et al. One-hour ambient-pressure-dried, scalable, stretchable MXene/polyurea aerogel enables synergistic defense against high-frequency mechanical shock and electromagnetic waves. Adv Funct Mater. 2024; 34(38): 2402889.

[16]

Zhang X, Tian X, Wu N, et al. Metal-organic frameworks with fine-tuned interlayer spacing for microwave absorption. Sci Adv. 2024; 10(11): eadl6498.

[17]

Pan F, Shi Y, Yang Y, et al. Porifera-inspired lightweight, thin, wrinkle-resistance, and multifunctional MXene foam. Adv Mater. 2024; 36(14): 2311135.

[18]

Lamiel C, Hussain I, Warner JH, Zhang K. Beyond Ti-based MXenes: a review of emerging non-Ti based metal-MXene structure, properties, and applications. Mater Today. 2023; 63: 313-338.

[19]

Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater. 2017; 2(2): 16098.

[20]

Naguib M, Barsoum MW, Gogotsi Y. Ten years of Progress in the synthesis and development of MXenes. Adv Mater. 2021; 33(39): 2103393.

[21]

Vahidmohammadi A, Rosen J, Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes). Science. 2021; 372(6547): eabf1581.

[22]

Hantanasirisakul K, Gogotsi Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv Mater. 2018; 30(52): 1804779.

[23]

Khazaei M, Arai M, Sasaki T, et al. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv Funct Mater. 2013; 23(17): 2185-2192.

[24]

Han M, Maleski K, Shuck CE, et al. Tailoring electronic and optical properties of MXenes through forming solid solutions. J Am Chem Soc. 2020; 142(45): 19110-19118.

[25]

Han M, Shuck CE, Rakhmanov R, et al. Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano. 2020; 14(4): 5008-5016.

[26]

Han M, Zhang D, Singh A, et al. Versatility of infrared properties of MXenes. Mater Today. 2023; 64: 31-39.

[27]

Wang L, Han M, Shuck CE, Wang X, Gogotsi Y. Adjustable electrochemical properties of solid-solution MXenes. Nano Energy. 2021; 88: 106308.

[28]

Halim J, Cook KM, Eklund P, Rosen J, Barsoum MW. XPS of cold pressed multilayered and freestanding delaminated 2D thin films of Mo2TiC2Tx and Mo2Ti2C3Tx (MXenes). Appl Surf Sci. 2019; 494: 1138-1147.

[29]

Wei Y, Zhang P, Soomro RA, Zhu Q, Xu B. Advances in the synthesis of 2D MXenes. Adv Mater. 2021; 33(39): 2103148.

[30]

Li J, Han K, Huang J, et al. Polarized nucleation and efficient decomposition of Li2O2 for Ti2C MXene cathode catalyst under a mixed surface condition in lithium-oxygen batteries. Energy Storage Mater. 2021; 35: 669-678.

[31]

Yoon Y, Lee M, Kim SK, et al. A strategy for synthesis of carbon nitride induced chemically doped 2D MXene for high-performance supercapacitor electrodes. Adv Energy Mater. 2018; 8(15): 1703173.

[32]

Lim KRG, Shekhirev M, Wyatt BC, Anasori B, Gogotsi Y, Seh ZW. Fundamentals of MXene synthesis. Nat Synth. 2022; 1(8): 601-614.

[33]

Seh ZW, Fredrickson KD, Anasori B, et al. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 2016; 1(3): 589-594.

[34]

Ulbricht R, Hendry E, Shan J, Heinz TF, Bonn M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev Mod Phys. 2011; 83(2): 543-586.

[35]

Cocker TL, Baillie D, Buruma M, et al. Microscopic origin of the Drude-Smith model. Phys Rev B. 2017; 96(20): 205439.

[36]

Zheng W, Sun B, Li D, et al. Band transport by large Fröhlich polarons in MXenes. Nat Phys. 2022; 18(5): 544-550.

[37]

Liu K, Réhault J, Liang B, et al. A quasi-2D Polypyrrole film with band-like transport behavior and high charge-carrier mobility. Adv Mater. 2023; 35(40): 2303288.

[38]

Jhon YI, Seo M, Jhon YM. First-principles study of a MXene terahertz detector. Nanoscale. 2018; 10(1): 69-75.

[39]

Muhammed MM, Mokkath JH. Surface termination dependent optical characteristics of MXene nanoflakes. Mater Today Chem. 2023; 29: 101447.

RIGHTS & PERMISSIONS

2025 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

71

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/