2024-10-20 2024, Volume 6 Issue 10

  • Select all
  • RESEARCH ARTICLE
    Lin Wang , Shugang Xu , Zihui Song , Wanyuan Jiang , Shouhai Zhang , Xigao Jian , Fangyuan Hu
    2024, 6(10): e12551. https://doi.org/10.1002/inf2.12551

    Lithium metal batteries (LMBs) are desirable candidates owing to their high-energy advantage for next-generation batteries. However, the practical application of LMBs continues to be constrained by thorny safety issues with the formation and growth of Li dendrites. Herein, the ZIF-67 MOFs are in situ coupled onto a single face of 3D porous nanofiber to fabricate an asymmetric Janus membrane, harnessing their anion adsorption capabilities to promote the uniform deposition of Li ions. In addition, the poly(ethylene glycol) diacrylate and trifluoromethyl methacrylate are introduced into nanofiber skeleton to form Janus@GPE, which preferentially reacts with Li metal to form a LiF-rich stable SEI layer to inhibit Li dendrite growth. Importantly, the synergistic effect of the MOFs and stable solid electrolyte interphase (SEI) layer results in superior cycling performance, achieving a remarkable 2500 h cycling at 1 mA cm–2 in the Li/Janus@GPE/Li configuration. In addition, the Janus@GPE electrolyte has a certain flame retardant, which can self-extinguish within 3 s, improving the safety performance of the batteries. Consequently, the Li/Janus@GPE/LFP flexible pouch cell exhibits favorable cycling stability (the capacity retention rate of 45 cycles is 91.8% at 0.1 C). This work provides new insights and strategies to improve the safety and practical utility of LMBs.

  • RESEARCH ARTICLE
    Shilong Zhao , Chaojie Chen , Zhiyuan Wang , Caofeng Pan , Cheng Yang
    2024, 6(10): e12552. https://doi.org/10.1002/inf2.12552

    Enabling pressure sensors with high resolution and a broad detection range is of paramount importance yet challenging due to the limitations of each known sensing method. Overlying different sensing mechanisms to achieve complementary functions is a promising approach, but it often leads to increased device thickness, crosstalk signals and complex signal channel management. Herein, we present a dual-functional conformable pressure sensor that adopts a Janus thin film layout, enabling simultaneous piezoelectric and triboelectric signal detection capabilities between just one electrode pair, showing a most compact device configuration. Notably, despite its thin thickness (∼80 µm for a packaged device), it exhibits a broad-range detection capability with high signal resolution and fast response time, demonstrating a distinct signal-relay characteristic corresponding to piezoelectricity and triboelectricity. Despite the slimness and simple structure, it shows an impressive signal resolution of 0.93 V·kPa–1 in the range of 0.1–140 kPa and 0.05 V·kPa–1 in the range of 140–380 kPa. Moreover, the device fabrication can be combined with the kirigami method to improve fitting to joint surfaces. This work introduces an innovative paradigm for designing advanced pressure sensing mechanisms, enabling a single device that can meet diverse application scenarios through its simplicity, slim layout, conformable, and self-powered characteristics to adapt to multiple scenarios.

  • RESEARCH ARTICLE
    Di Xin , Jing Han , Wei Song , Wenbin Han , Meng Wang , Zhimeng Li , Yunwu Zhang , Yang Li , Hong Liu , Xiaoyan Liu , Dehui Sun , Weijia Zhou
    2024, 6(10): e12557. https://doi.org/10.1002/inf2.12557

    During the past few decades, pyroelectric sensors have attracted extensive attention due to their prominent features. However, their effectiveness is hindered by low electric output. In this study, the laser processed lithium niobate (LPLN) wafers are fabricated to improve the temperature–voltage response. These processed wafers are utilized to construct pyroelectric sensors as well as human–machine interfaces. The laser induces escape of oxygen and the formation of oxygen vacancies, which enhance the charge transport capability on the surface of lithium niobate (LN). Therefore, the electrodes gather an increased quantity of charges, increasing the pyroelectric voltage on the LPLN wafers to a 1.3 times higher voltage than that of LN wafers. For the human–machine interfaces, tactile information in various modes can be recognized by a sensor array and the temperature warning system operates well. Therefore, the laser modification approach is promising to enhance the performance of pyroelectric devices for applications in human–machine interfaces.

  • RESEARCH ARTICLE
    Liwei Tang , Xinxu Zhu , Yu Ma , Haojie Xu , Shiguo Han , Yi Liu , Yaoyao Chen , Daohua Wang , Junhua Luo , Zhihua Sun
    2024, 6(10): e12593. https://doi.org/10.1002/inf2.12593

    Soft molecule-based ferroelectrics with unique structural flexibility hold a promise for versatile applications of non-volatile memory, imaging and photovoltaic devices. Except for few polymers (e.g., polyvinylidene fluoride, PVDF), it is challenging to exploit soft ferroelectric crystals toward free-standing flexible photoactive devices. We here report a multiaxial soft molecule-based ferroelectric, (n-PA)2PbCl4 (1, where n-PA+ is n-pentylammonium), of which spontaneous polarization can be reversibly switched in both crystal and powder forms. Strikingly, single crystals of 1 have unusual structural flexibility and bendability, achieving the self-standing bending with a bending radius of ∼0.22 mm. Besides, the pyroelectric activities are also preserved for these single crystals after several bending cycles. Further, the bendable crystal-based photodetector of 1 allows broadband photoactivities via the photo-pyroelectric effect, covering a wide range from 405 to 940 nm spectral region, breaking through the limit of optical absorption bandgap. As the first study of bendable free-standing photo-pyroelectric detectors in ferroelectric crystals, our work sheds light on the assembly of flexible smart photoelectric devices.

  • RESEARCH ARTICLE
    2024, 6(10): e12599. https://doi.org/10.1002/inf2.12599

    Local phase transition in transition metal dichalcogenides (TMDCs) by lithium intercalation enables the fabrication of high-quality contact interfaces in two-dimensional (2D) electronic devices. However, controlling the intercalation of lithium is hitherto challenging in vertically stacked van der Waals heterostructures (vdWHs) due to the random diffusion of lithium ions in the hetero-interface, which hinders their application for contact engineering of 2D vdWHs devices. Herein, a strategy to restrict the lithium intercalation pathway in vdWHs is developed by using surface-permeation assisted intercalation while sealing all edges, based on which a high-performance edge-contact MoS2 vdWHs floating-gate transistor is demonstrated. Our method avoids intercalation from edges that are prone to be random but intentionally promotes lithium intercalation from the top surface. The derived MoS2 floating-gate transistor exhibits improved interface quality and significantly reduced subthreshold swing (SS) from >600 to 100 mV dec–1. In addition, ultrafast program/erase performance together with well-distinguished 32 memory states are demonstrated, making it a promising candidate for low-power artificial synapses. The study on controlling the lithium intercalation pathways in 2D vdWHs offers a viable route toward high-performance 2D electronics for memory and neuromorphic computing purposes.

  • RESEARCH ARTICLE
    2024, 6(10): e12600. https://doi.org/10.1002/inf2.12600

    Photothermoelectric (PTE) detectors combine photothermal and thermoelectric conversion, surmounting material band gap restrictions and limitations related to matching light wavelengths, have been widely used in telecommunication band detection. Two-dimensional (2D) materials with gate-tunable Seebeck coefficient can induce the generation of photothermal currents under illumination by the asymmetric Seebeck coefficient, making them promising candidate for PTE detectors in the telecommunication band. In this work, we report that a newly explored van der Waals (vdW) layered material, SnP2Se6, possessing excellent field regulation capabilities and behaviors as an ideal candidate for PTE detector implementation. With the assistance of temperature-dependent Raman characterization, the suspended atomic thin SnP2Se6 nanosheets reveal thickness-dependent thermal conductivity of 1.4–5.7 W m–1 K–1 at room temperature. The 2D SnP2Se6 demonstrates high Seebeck coefficient (S) and power factor (PF), which are estimated to be –506 µV K–1 and 207 µW m–1 K–2, respectively. By effectively modulating the SnP2Se6 localized carrier concentration, which in turn leads to inhomogeneous Seebeck coefficients, the designed dual-gate PTE detector with 2D SnP2Se6 channel demonstrates wide spectral photoresponse in telecommunication bands, yielding high responsivity (R = 1.2 mA W–1) and detectivity (D* = 6 × 109 Jones) under 1550 nm light illumination. Our findings provide a new material platform and device configuration for the telecommunication band detection.

  • REVIEW ARTICLE
    2024, 6(10): e12601. https://doi.org/10.1002/inf2.12601

    The relentless pursuit of sustainable and safe energy storage technologies has driven a departure from conventional lithium-based batteries toward other relevant alternatives. Among these, aqueous batteries have emerged as a promising candidate due to their inherent properties of being cost-effective, safe, environmentally friendly, and scalable. However, traditional aqueous systems have faced limitations stemming from water’s narrow electrochemical stability window (∼1.23 V), severely constraining their energy density and viability in high-demand applications. Recent advancements in decoupling aqueous batteries offer a novel solution to overcome this challenge by separating the anolyte and catholyte, thereby expanding the theoretical operational voltage window to over 3 V. One key component of this innovative system is the ion-selective membrane (ISM), acting as a barrier to prevent undesired crossover between electrolytes. This review provides a comprehensive overview of recent advancements in decoupling aqueous batteries, emphasizing the application of various types of ISMs. Moreover, we summarize different specially designed ISMs and their performance attributes. By addressing the current challenges ISMs face, the review outlines potential pathways for future enhancement and development of aqueous decoupling batteries.

  • RESEARCH ARTICLE
    2024, 6(10): e12602. https://doi.org/10.1002/inf2.12602

    Due to the built-in electric field induced by spontaneous polarization in hybrid perovskite (HP) ferroelectrics, the devices based on them exhibit excellent performance in self-powered photodetection. However, most of the self-powered photodetector are made of lead-based HP ferroelectrics and have a relatively narrow photoresponse waveband. Although lead-free HPs solve the problem of lead toxicity, their optoelectronic performance is inferior to that of lead-based HPs and photoresponse waveband is limited by its optical band gap, which hinders their further application. To solve this problem, herein, a lead-free HP ferroelectric (HDA)BiI5 (HDA is hexane-1,6-diammonium) with large spontaneous polarization shows an enhanced photocurrent and achieves x-ray-ultraviolet–visible-near-infrared (x-ray-UV–Vis–NIR) photoresponse through the ferro-pyro-phototronic (FPP) effect. The ferroelectric, pyroelectric, and photovoltaic characteristics coupled together in a single-phase (HDA)BiI5 ferroelectric is an effective way to improve the performance of the devices. What is particularly attractive is that the FPP effect not only improves the optoelectronic performance of (HDA)BiI5, but also achieves broadband photoresponses beyond its optical absorption range. Especially, the current boosting with an exceptional contrast of ∼1100% and 2400% under 520 and 637 nm, respectively, which is associated with FPP effect. Meanwhile, single crystal self-powered photodetector based on (HDA)BiI5 also exhibit significant FPP effects even under high-energy x-ray, which owns an outstanding sensitivity of 170.7 µC Gy–1 cm–2 and a lower detection limit of 266 nGy s–1 at 0 V bias. Therefore, it is of great significance to study the coupling of multiple physical effects and improve device performance based on lead-free HP ferroelectrics.

  • RESEARCH ARTICLE
    Dohyun Lim, Min Woo Jeong, Hyeongho Min, Yeon Soo Lee, Gui Won Hwang, Seung Hwan Jeon, Kyu Ho Jung, Ngoc Thanh Phuong Vo, Min-Seok Kim, Da Wan Kim, Jin Young Oh, Changhyun Pang
    2024, 6(10): e12603. https://doi.org/10.1002/inf2.12603

    Autonomously self-healing, reversible, and soft adhesive microarchitectures and structured electric elements could be important features in stable and versatile bioelectronic devices adhere to complex surfaces of the human body (rough, dry, wet, and vulnerable). In this study, we propose an autonomous self-healing multi-layered adhesive patch inspired by the octopus, which possess self-healing and robust adhesion properties in dry/underwater conditions. To implement autonomously self-healing octopus-inspired architectures, a dynamic polymer reflow model based on structural and material design suggests criteria for three-dimensional patterning self-healing elastomers. In addition, self-healing multi-layered microstructures with different moduli endows efficient self-healing ability, human-friendly reversible bio-adhesion, and stable mechanical deformability. Through programmed molecular behavior of microlevel hybrid multiscale architectures, the bioinspired adhesive patch exhibited robust adhesion against rough skin surface under both dry and underwater conditions while enabling autonomous adhesion restoring performance after damaged (over 95% healing efficiency under both conditions for 24 h at 30°C). Finally, we developed a self-healing skin-mountable adhesive electronics with repeated attachment and minimal skin irritation by laminating thin gold electrodes on octopus-like structures. Based on the robust adhesion and intimate contact with skin, we successfully obtained reliable measurements during dynamic motion under dry, wet, and damaged conditions.

  • RESEARCH ARTICLE
    2024, 6(10): e12604. https://doi.org/10.1002/inf2.12604

    Low-dimensional metal halide perovskites exhibit exceptional photoelectronic properties and intrinsic stability, positioning them as a promising class of semiconductor materials for light-emitting devices and photodetectors. In this work, we present a millimeter-scale single crystal of mixed low-dimensional (one-dimensional–zero-dimensional [1D–0D]) organic lead iodide with well-defined crystallinity. The fabricated single-crystal devices demonstrate high-sensitivity photoresponse and x-ray detection performance. By spatially isolating organic molecules to form the mixed 1D–0D crystal structure, ion migrations is effectively suppressed, resulting in a remarkable three orders of magnitude reduction in the dark current (56.4 pA @200 V) of the single-crystal devices. Furthermore, by enhancing the background characteristics, we achieved an impressive low x-ray detection limit of 154.5 nGys–1 in the single-crystal device. These findings highlight that the mixed 1D–0D organic lead iodide configuration efficiently controls ion migration within the crystal structure, offering a promising avenue for realizing high-performance perovskite-based photodetectors and x-ray detectors.