2024-11-20 2024, Volume 6 Issue 11

  • Select all
  • RESEARCH ARTICLE
    Ping Rong , Shiyong Gao , Lin Li , Wen He , Mingyi Zhang , Shuai Ren , Yajie Han , Shujie Jiao , Qing Chen , Jinzhong Wang
    2024, 6(11): e12567. https://doi.org/10.1002/inf2.12567

    The highly ordered film assembled by regularly 1D nanostructures has potential prospects in electronic, photoelectronic and other fields because of its excellent light-trapping effect and electronic transport property. However, the controlled growth of highly ordered film remains a great challenge. Herein, large-area and highly ordered Bi2S3 film is synthesized on fluorophlogopite mica substrate by chemical vapor deposition method. The Bi2S3 film features hollowed-out crosslinked network structure, assembled by 1D nanobelts that regularly distribute in three orientations, which agrees well with the first principles calculations. Based on the as-grown Bi2S3 film, the broadband photodetector with a response range from 365 to 940 nm is fabricated, exhibiting a maximum responsivity up to 98.51 mA W–1, specific detectivity of 2.03 × 1010 Jones and fast response time of 35.19 ms. The stable instantaneous on/off behavior for 500 cycles and reliable photoresponse characteristics of the Bi2S3 photodetector after storage in air for 6 months confirm its excellent long-term stability and air stability. Significantly, as sensing pixel and signal receiving terminal, the device successfully achieves high-resolution imaging of characters of “H”, “I” and “T”, and secure transmission of confidential information. This work shows a great potential of the large-area and highly ordered Bi2S3 film toward the development of future multiple functional photoelectronic applications.

  • RESEARCH ARTICLE
    Guoyi Li , Shenghong Li , Jahangeer Ahmed , Wei Tian , Liang Li
    2024, 6(11): e12594. https://doi.org/10.1002/inf2.12594

    Flexible perovskite photodetectors (FPDs) are promising for novel wearable devices in bionics, robotics and health care. However, their performance degradation and instability during operations remain a grand challenge. Superior flexibility and spontaneous functional repair of devices without the need for any external drive or intervention are ideal goals for FPDs. Herein, by using phenyl disulfide instead of alkyl disulfide as a crosslinking agent, disulfide bonds with lower bond energy are introduced, thus endowing the polyurethane network (SCPU) with the ability of self-healing at room temperature. SCPU is filled to the grain boundary of perovskite film, which not only improves the crystal quality of perovskite and mechanical stability of FPD but also enables FPD to self-heal at room temperature. As a result, the as-prepared FPD exhibits a superior responsivity of 0.4 A W–1, a high specific detectivity of 2.5 × 1011 Jones and 2 µs fast response time in a self-powered mode. More importantly, the FPD still retained 91% of the initial photo responsivity after 9000 times of bending upon cyclic healing. This polymer doping strategy provides an effective solution for stable operation and room-temperature self-healing for FPDs.

  • REVIEW ARTICLE
    2024, 6(11): e12597. https://doi.org/10.1002/inf2.12597

    The electrolyte-wettability at electrode material/electrolyte interface is a critical factor that governs the fundamental mechanisms of electrochemical reaction efficiency and kinetics of electrode materials in practical electrochemical energy storage. Therefore, the design and construction of electrode material surfaces with improved electrolyte-wettability has been demonstrated to be important to optimize electrochemical energy storage performance of electrode material. Here, we comprehensively summarize advanced strategies and key progresses in surface chemical modification for enhancing electrolyte-wettability of electrode materials, including polar atom doping by post treatment, introducing functional groups, grafting molecular brushes, and surface coating by in situ reaction. Specifically, the basic principles, characteristics, and challenges of these surface chemical strategies for improving electrolyte-wettability of electrode materials are discussed in detail. Finally, the potential research directions regarding the surface chemical strategies and advanced characterization techniques for electrolyte-wettability in the future are provided. This review not only insights into the surface chemical strategies for improving electrolyte-wettability of electrode materials, but also provides strategic guidance for the electrolyte-wettability modification and optimization of electrode materials in pursuing high-performance electrochemical energy storage devices.

  • REVIEW ARTICLE
    2024, 6(11): e12609. https://doi.org/10.1002/inf2.12609

    Most electrocatalysts are known to experience structural change during the oxygen evolution reaction (OER) process. Considerable endeavors have been dedicated thus far to comprehending the catalytic process and uncovering the underlying mechanism. During the dynamic evolution of catalyst structure, component leaching of electrocatalysts is the most common phenomenon. This article offers a concise overview of recent findings and developments related to the leaching phenomena in the OER process in terms of fundamental understanding of leaching, advanced characterization techniques used to investigate leaching, leaching of inactive components, and leaching of active components. Leaching behaviors and the induced effects in various kinds of OER catalysts are discussed, progress in manipulating leaching amount/degree toward a tunable surface evolution is spotlighted, and finally, three representative types of structure transformations induced by leaching metastable species in OER condition are proposed. By understanding the process of component leaching in the OER, it will provide more guidance for the rational design of superior electrocatalysts.

  • RESEARCH ARTICLE
    2024, 6(11): e12611. https://doi.org/10.1002/inf2.12611

    Aqueous zinc-ion batteries (AZIBs) have garnered significant research interest as promising next-generation energy storage technologies owing to their affordability and high level of safety. However, their restricted ionic conductivity at subzero temperatures, along with dendrite formation and subsequent side reactions, unavoidably hinder the implementation of grid-scale applications. In this study, a novel bimetallic cation-enhanced gel polymer electrolyte (Ni/Zn-GPE) was engineered to address these issues. The Ni/Zn-GPE effectively disrupted the hydrogen-bonding network of water, resulting in a significant reduction in the freezing point of the electrolyte. Consequently, the designed electrolyte demonstrates an impressive ionic conductivity of 28.70 mS cm–1 at –20°C. In addition, Ni2+ creates an electrostatic shielding interphase on the Zn surface, which confines the sequential Zn2+ nucleation and deposition to the Zn (002) crystal plane. Moreover, the intrinsically high activation energy of the Zn (002) crystal plane generated a dense and dendrite-free plating/stripping morphology and resisted side reactions. Consequently, symmetrical batteries can achieve over 2700 hours of reversible cycling at 5 mA cm–2, while the Zn || V2O5 battery retains 85.3% capacity after 1000 cycles at –20°C. This study provides novel insights for the development and design of reversible low-temperature zinc-ion batteries.

  • RESEARCH ARTICLE
    2024, 6(11): e12613. https://doi.org/10.1002/inf2.12613

    Solid-state Li metal battery has attracted increasing interests for its potentially high energy density and excellent safety assurance, which is a promising candidate for next generation battery system. However, the low ionic conductivity and Li+ transport number of solid-state polymer electrolytes limit their practical application. Herein, a composite polymer electrolyte with self-inserted structure is proposed using the layered double hydroxides (LDHs) as dopant to achieve a fast Li+ transport channel in poly(vinylidene-co-trifluoroethylene) [P(VDF-TrFE)] based polymer electrolyte. In such a composite electrolyte, P(VDF-TrFE) polymer has an all-trans conformation, in which all fluorine atoms locate on one side of the polymer chain, providing fast Li+ transport highways. Meanwhile, the LDH can immobilize the anions of Li salts based on the electrostatic interactions, promoting the dissociation of Li salts, thereby enhancing the ionic conductivity (6.4 × 10–4 S cm–1) and Li+ transference number (0.76). The anion immobilization effect can realize uniform electric field distribution at the anode surface and suppress the dendritic Li growth. Moreover, the hydrogen bonding interaction between LDH and polymer chains also endows the composite electrolyte with strong mechanical properties. Thus, at room temperature, the Li || Li symmetric cells can be stably cycled over 1000 h at a current density of 0.2 mA cm–2, and the full cells with LiFePO4 cathode deliver a high capacity retention (>95%) after 200 cycles. This work offers a promising route to construct solid-state polymer electrolytes with fast Li+ transport.

  • RESEARCH ARTICLE
    2024, 6(11): e12626. https://doi.org/10.1002/inf2.12626

    Emerging freestanding membrane technologies, especially using inorganic thermoelectric materials, demonstrate the potential for advanced thermoelectric platforms. However, using rare and toxic elements during material processing must be circumvented. Herein, we present a scalable method for synthesizing highly crystalline CuS membranes for thermoelectric applications. By sulfurizing crystalline Cu, we produce a highly percolated and easily transferable network of submicron CuS rods. The CuS membrane effectively separates thermal and electrical properties to achieve a power factor of 0.50 mW m–1 K–2 and thermal conductivity of 0.37 W m–1 K–1 at 650 K (estimated value). This yields a record-high dimensionless figure-of-merit of 0.91 at 650 K (estimated value) for covellite. Moreover, integrating 12 CuS devices into a module resulted in a power generation of ∼4 µW at ΔT of 40 K despite using a straightforward configuration with only p-type CuS. Furthermore, based on the temperature-dependent electrical characteristics of CuS, we develop a wearable temperature sensor with antibacterial properties.