Unusual bendable soft molecule-based ferroelectric crystals enabling the flexible photo-pyroelectric detection

Liwei Tang , Xinxu Zhu , Yu Ma , Haojie Xu , Shiguo Han , Yi Liu , Yaoyao Chen , Daohua Wang , Junhua Luo , Zhihua Sun

InfoMat ›› 2024, Vol. 6 ›› Issue (10) : e12593

PDF
InfoMat ›› 2024, Vol. 6 ›› Issue (10) : e12593 DOI: 10.1002/inf2.12593
RESEARCH ARTICLE

Unusual bendable soft molecule-based ferroelectric crystals enabling the flexible photo-pyroelectric detection

Author information +
History +
PDF

Abstract

Soft molecule-based ferroelectrics with unique structural flexibility hold a promise for versatile applications of non-volatile memory, imaging and photovoltaic devices. Except for few polymers (e.g., polyvinylidene fluoride, PVDF), it is challenging to exploit soft ferroelectric crystals toward free-standing flexible photoactive devices. We here report a multiaxial soft molecule-based ferroelectric, (n-PA)2PbCl4 (1, where n-PA+ is n-pentylammonium), of which spontaneous polarization can be reversibly switched in both crystal and powder forms. Strikingly, single crystals of 1 have unusual structural flexibility and bendability, achieving the self-standing bending with a bending radius of ∼0.22 mm. Besides, the pyroelectric activities are also preserved for these single crystals after several bending cycles. Further, the bendable crystal-based photodetector of 1 allows broadband photoactivities via the photo-pyroelectric effect, covering a wide range from 405 to 940 nm spectral region, breaking through the limit of optical absorption bandgap. As the first study of bendable free-standing photo-pyroelectric detectors in ferroelectric crystals, our work sheds light on the assembly of flexible smart photoelectric devices.

Keywords

broadband photoresponse / photo-pyroelectric effect / self-standing bendable crystals / soft molecular-based ferroelectric

Cite this article

Download citation ▾
Liwei Tang, Xinxu Zhu, Yu Ma, Haojie Xu, Shiguo Han, Yi Liu, Yaoyao Chen, Daohua Wang, Junhua Luo, Zhihua Sun. Unusual bendable soft molecule-based ferroelectric crystals enabling the flexible photo-pyroelectric detection. InfoMat, 2024, 6(10): e12593 DOI:10.1002/inf2.12593

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Boyn S, Grollier J, Lecerf G, et al. Learning through ferroelectric domain dynamics in solid-state synapses. Nat Commun. 2017; 8(1): 14736-14743.

[2]

Xi Z, Ruan J, Li C, et al. Giant tunnelling electro-resistance in metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier. Nat Commun. 2017; 8(1): 15217-15225.

[3]

Malashevich A, Marshall MS, Visani C, et al. Controlling mobility in perovskite oxides by ferroelectric modulation of atomic-scale interface structure. Nano Lett. 2018; 18(1): 573-578.

[4]

Scott JF, Paz de Araujo CA. Ferroelectric memories. Science. 1989; 246(4936): 1400-1405.

[5]

Bowen C, Kim HA, Weaverb PM, Dunnc S. Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ Sci. 2014; 7(1): 25-44.

[6]

Zhang S, Li F, Jiang X, Kim J, Luo J, Geng X. Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers—A review. Prog Mater Sci. 2015; 68: 1-66.

[7]

Qian X, Han D, Zheng L, et al. High-entropy polymer produces a giant electrocaloric effect at low fields. Nature. 2021; 600(7890): 664-669.

[8]

Gao R, Shi X, Wang J, Huang H. Understanding electrocaloric cooling of ferroelectrics guided by phase-field modeling. J Am Ceram Soc. 2022; 105(6): 3689-3714.

[9]

Li F, Cabral Matthew J, Xu B, et al. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Science. 2019; 364(6437): 264-268.

[10]

Zhang HY, Tang YY, Gu ZX, et al. Biodegradable ferroelectric molecular crystal with large piezoelectric response. Science. 2024; 383(6690): 1492-1498.

[11]

Kumar M, Seo H. High-performing self-powered photosensing and reconfigurable pyro-photoelectric memory with ferroelectric hafnium oxide. Adv Mater. 2021; 34(5): 2106881.

[12]

Hong Z, Damodaran AR, Xue F, et al. Stability of polar vortex lattice in ferroelectric superlattices. Nano Lett. 2017; 17(4): 2246-2252.

[13]

Pandya S, Velarde GA, Gao R, et al. Understanding the role of ferroelastic domains on the pyroelectric and electrocaloric effects in ferroelectric thin films. Adv Mater. 2019; 31(5): 1803312.

[14]

Lee JH, Lee KY, Gupta MK, et al. Highly stretchable piezoelectric–pyroelectric hybrid nanogenerator. Adv Mater. 2014; 26(5): 765-769.

[15]

Liu Z, Lu T, Dong X, Wang G, Liu Y. Ferroelectric ceramics for pyroelectric detection applications: a review. IEEE Trans Ultrason Ferroelectr Freq Control. 2021; 68(2): 242-252.

[16]

Zhang Y, Phuong PTT, Roake E, et al. Thermal energy harvesting using pyroelectric-electrochemical coupling in ferroelectric materials. Joule. 2020; 4(2): 301-309.

[17]

Liu Y, Ji Y, Xia Y, Wu L, Bowen CR, Yang Y. Enhanced photocurrent in ferroelectric Bi0.5Na0.5TiO3 materials via ferro-pyro-phototronic effect. Nano Energy. 2022; 98: 107312.

[18]

Wang Y, Zhu Y, Gu H, Wang X. Enhanced performances of n-ZnO nanowires/p-Si heterojunctioned pyroelectric near-infrared photodetectors via the plasmonic effect. ACS Appl Mater Interfaces. 2021; 13(48): 57750-57758.

[19]

Ma N, Yang Y. Enhanced self-powered UV photoresponse of ferroelectric BaTiO3 materials by pyroelectric effect. Nano Energy. 2017; 40: 352-359.

[20]

Lynch CS, Chen L, Suo Z, Mcmeeking RM, Yang W. Crack growth in ferroelectric ceramics driven by cyclic polarization switching. J Intell Mater Syst Struct. 1995; 6(2): 191-198.

[21]

Arias I, Serebrinsky S, Ortiz M. A phenomenological cohesive model of ferroelectric fatigue. Acta Mater. 2006; 54(4): 975-984.

[22]

Comiskey B, Albert JD, Yoshizawa H, Jacobson J. An electrophoretic ink for all-printed reflective electronic displays. Nature. 1998; 394(6690): 253-255.

[23]

Yoon J, Jo S, Chun IS, et al. GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies. Nature. 2010; 465(7296): 329-333.

[24]

Lam Po Tang S. Recent developments in flexible wearable electronics for monitoring applications. Trans Inst Meas Control. 2007; 29(3): 283-300.

[25]

Xu K, Lu Y, Takei K. Multifunctional skin-inspired flexible sensor systems for wearable electronics. Adv Mater Technol. 2019; 4(3): 1800628.

[26]

Jia X, Guo R, Kang Tay B, Yan X. Flexible ferroelectric devices: status and applications. Adv Funct Mater. 2022; 32(45): 2205933.

[27]

Sun H, Luo Z, Zhao L, et al. BiFeO3-based flexible ferroelectric memristors for neuromorphic pattern recognition. Appl Electron Mater. 2020; 2(4): 1081-1089.

[28]

Jiang J, Bitla Y, Huang CW, et al. Flexible ferroelectric element based on van der Waals heteroepitaxy. Sci Adv. 2017; 3(6): e1700121.

[29]

Han L, Dong G, Liu M, Nie Y. Freestanding perovskite oxide membranes: a new playground for novel ferroic properties and applications. Adv Funct Mater. 2023; 34(4): 2309543.

[30]

Zabek D, Taylor J, Boulbar EL, Bowen CR. Micropatterning of flexible and free standing polyvinylidene difluoride (PVDF) films for enhanced pyroelectric energy transformation. Adv Energy Mater. 2015; 5(8): 1401891.

[31]

Owczarek M, Hujsak KA, Ferris DP, et al. Flexible ferroelectric organic crystals. Nat Commun. 2016; 7(1): 13108.

[32]

Li W, Wang Z, Deschler F, Gao S, Friend RH, Cheetham AK. Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nat Rev Mater. 2017; 2(3): 16099.

[33]

Xu WJ, Li PF, Tang YY, Zhang WX, Xiong RG, Chen XM. A molecular perovskite with switchable coordination bonds for high-temperature multiaxial ferroelectrics. J Am Chem Soc. 2017; 139(18): 6369-6375.

[34]

Zhang Z, Li PF, Tang YY, et al. Tunable electroresistance and electro-optic effects of transparent molecular ferroelectrics. Sci Adv. 2017; 3(8): e1701008.

[35]

Zhang HY, Song XJ, Chen XG, et al. Observation of vortex domains in a two-dimensional lead iodide perovskite ferroelectric. J Am Chem Soc. 2020; 142(10): 4925-4931.

[36]

Aizu K. Possible species of ferromagnetic, ferroelectric, and ferroelastic crystals. Phys Rev B. 1970; 2(3): 754-772.

[37]

Aizu K. Possible species of “ferroelastic” crystals and of simultaneously ferroelectric and ferroelastic crystals. J Physical Soc Japan. 1969; 27(2): 387-396.

[38]

Glass AM. Dielectric, thermal, and pyroelectric properties of ferroelectric LiTaO3. Phys Rev. 1968; 172(2): 564-571.

[39]

Park JH, Kim BK, Song KH, Park SJ. Electric-field induced strains and pyroelectric coefficients in lead magnesium niobate-lead titanate solid solutions. Mater Res Bull. 1995; 30(4): 435-441.

[40]

Tang YY, Li PF, Liao WQ, Shi PP, You YM, Xiong RG. Multiaxial molecular ferroelectric thin films bring light to practical applications. J Am Chem Soc. 2018; 140(26): 8051-8059.

[41]

Liu X, Zhao W, Cui H, et al. Organic–inorganic halide perovskite based solar cells—revolutionary progress in photovoltaics. Inorg Chem Front. 2015; 2(4): 315-335.

[42]

Park M, Kim HJ, Jeong I, et al. Mechanically recoverable and highly efficient perovskite solar cells: investigation of intrinsic flexibility of organic–inorganic perovskite. Adv Energy Mater. 2015; 5(22): 1501406.

[43]

You D, Xu C, Zhang W, Zhao J, Qin F, Shi Z. Photovoltaic-pyroelectric effect coupled broadband photodetector in self-powered ZnO/ZnTe core/shell nanorod arrays. Nano Energy. 2019; 62: 310-318.

[44]

Wang Z, Yu R, Wang X, Wu W, Wang ZL. Ultrafast response p-Si/n-ZnO heterojunction ultraviolet detector based on pyro-phototronic effect. Adv Mater. 2016; 28(32): 6880-6886.

[45]

Wang L, Xue H, Zhu M, Gao Y, Wang Z. Graded strain-enhanced pyro-phototronic photodetector with a broad and plateau band. Nano Energy. 2022; 97: 107163.

[46]

Dai Y, Wang X, Peng W, et al. Self-powered Si/CdS flexible photodetector with broadband response from 325 to 1550 nm based on pyro-phototronic effect: an approach for photosensing below bandgap energy. Adv Mater. 2018; 30(9): 1705893.

[47]

Wang Z, Yu R, Pan C, et al. Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing. Nat Commun. 2015; 6(1): 8401.

[48]

Wang ZL, Zhu G, Yang Y, Wang S, Pan C. Progress in nanogenerators for portable electronics. Mater Today. 2012; 15(12): 532-543.

RIGHTS & PERMISSIONS

2024 The Author(s). InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

179

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/