Promoting uniform lithium deposition with Janus gel polymer electrolytes enabling stable lithium metal batteries

Lin Wang , Shugang Xu , Zihui Song , Wanyuan Jiang , Shouhai Zhang , Xigao Jian , Fangyuan Hu

InfoMat ›› 2024, Vol. 6 ›› Issue (10) : e12551

PDF
InfoMat ›› 2024, Vol. 6 ›› Issue (10) : e12551 DOI: 10.1002/inf2.12551
RESEARCH ARTICLE

Promoting uniform lithium deposition with Janus gel polymer electrolytes enabling stable lithium metal batteries

Author information +
History +
PDF

Abstract

Lithium metal batteries (LMBs) are desirable candidates owing to their high-energy advantage for next-generation batteries. However, the practical application of LMBs continues to be constrained by thorny safety issues with the formation and growth of Li dendrites. Herein, the ZIF-67 MOFs are in situ coupled onto a single face of 3D porous nanofiber to fabricate an asymmetric Janus membrane, harnessing their anion adsorption capabilities to promote the uniform deposition of Li ions. In addition, the poly(ethylene glycol) diacrylate and trifluoromethyl methacrylate are introduced into nanofiber skeleton to form Janus@GPE, which preferentially reacts with Li metal to form a LiF-rich stable SEI layer to inhibit Li dendrite growth. Importantly, the synergistic effect of the MOFs and stable solid electrolyte interphase (SEI) layer results in superior cycling performance, achieving a remarkable 2500 h cycling at 1 mA cm–2 in the Li/Janus@GPE/Li configuration. In addition, the Janus@GPE electrolyte has a certain flame retardant, which can self-extinguish within 3 s, improving the safety performance of the batteries. Consequently, the Li/Janus@GPE/LFP flexible pouch cell exhibits favorable cycling stability (the capacity retention rate of 45 cycles is 91.8% at 0.1 C). This work provides new insights and strategies to improve the safety and practical utility of LMBs.

Keywords

flame retardant / lithium metal batteries / MOFs / solid electrolyte interphase / stable cycling

Cite this article

Download citation ▾
Lin Wang, Shugang Xu, Zihui Song, Wanyuan Jiang, Shouhai Zhang, Xigao Jian, Fangyuan Hu. Promoting uniform lithium deposition with Janus gel polymer electrolytes enabling stable lithium metal batteries. InfoMat, 2024, 6(10): e12551 DOI:10.1002/inf2.12551

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cheng X, Zhao C, Yao Y, et al. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes. Chem. 2019; 5(1): 74-96.

[2]

Xiao J, Shi F, Glossmann T, Burnett C, Liu Z. From laboratory innovations to materials manufacturing for lithium-based batteries. Nat Energy. 2023; 8(4): 329-339.

[3]

Wang J, Yang K, Sun S, et al. Advances in thermal-related analysis techniques for solid-state lithium batteries. InfoMat. 2023; 5(4): 12401.

[4]

Yang C, Fu K, Zhang Y, Hitz E, Hu L. Protected lithium-metal anodes in batteries: from liquid to solid. Adv Mater. 2017; 29(36): 1701169.

[5]

Feng X, Ren D, He X, Ouyang M. Mitigating thermal runaway of lithium-ion batteries. Joule. 2020; 4(4): 743-770.

[6]

Hu Z, Wang C, Wang C, et al. Uncovering the critical impact of the solid electrolyte interphase structure on the interfacial stability. InfoMat. 2021; 4(3): 12249.

[7]

Liu J, Bao Z, Cui Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat Energy. 2019; 4(3): 180-186.

[8]

Zu C, Yu H, Li H, et al. Enabling the thermal stability of solid electrolyte interphase in Li-ion battery. InfoMat. 2021; 3(6): 648-661.

[9]

Du L, Zhang B, Yang C, et al. Leaf-inspired quasi-solid electrolyte enables uniform lithium deposition and suppressed lithium-electrolyte reactions for lithium metal batteries. Energy Storage Mater. 2023; 61: 102914.

[10]

Abdelmaoula A, Shu J, Cheng Y, et al. Core–shell MOF-in-MOF nanopore bifunctional host of electrolyte for high-performance solid-state lithium batteries. Small Methods. 2021; 5(8): 2100508.

[11]

Zhao R, Wu Y, Liang Z. Metal–organic frameworks for solid-state electrolytes. Energ Environ Sci. 2020; 8(8): 2386-2403.

[12]

Li J, Jing X, Li Q, et al. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem Soc Rev. 2020; 49(11): 3565-3604.

[13]

Li Z, Wang S, Shi J, et al. A 3D interconnected metal-organic framework-derived solid-state electrolyte for dendrite-free lithium metal battery. Energy Storage Mater. 2022; 47: 262-270.

[14]

Han D, Wang P, Li P, et al. Homogeneous and fast Li-ion transport enabled by a novel metal–organic-framework-based succinonitrile electrolyte for dendrite-free Li deposition. ACS Appl Mater Interfaces. 2021; 13(44): 52688-52696.

[15]

Wu Q, Zheng Y, Guan X, Xu J, Cao F, Li C. Dynamical SEI reinforced by open-architecture MOF film with stereoscopic lithiophilic sites for high-performance lithium–metal batteries. Adv Funct Mater. 2021; 31(28): 2101034.

[16]

Lin R, Jin Y, Zhang X, Li Y, Zhang Y, Xiong Y. Hierarchical bulk-interface design of MOFs framework for polymer electrolyte towards ultra-stable quasi-solid-state Li metal batteries. Chem Eng J. 2024; 479(1): 147558.

[17]

Yang L, Cao J, Liang W, et al. Effects of the separator MOF-Al2O3 coating on battery rate performance and solid–electrolyte interphase formation. ACS Appl Mater Interfaces. 2022; 14(11): 13722.

[18]

Deng N, Wang L, Feng Y, et al. Co-based and Cu-based MOFs modified separators to strengthen the kinetics of redox reaction and inhibit lithium-dendrite for long-life lithium-sulfur batteries. Chem Eng J. 2020; 388(15): 124241.

[19]

Lin G, Jia K, Bai Z, et al. Metal-organic framework sandwiching porous super-engineering polymeric membranes as anionphilic separators for dendrite-free lithium metal batteries. Adv Funct Mater. 2022; 32(27): 2207969.

[20]

Liu H, Pan H, Yan M, Zhang X, Jiang Y. Extraordinary ionic conductivity excited by hierarchical ion-transport pathways in MOF-based quasi-solid electrolytes. Adv Mater. 2023; 35(26): 2300888.

[21]

Bai Z, Jia K, Liu C, et al. A solvent regulated hydrogen bond crosslinking strategy to prepare robust hydrogel paint for oil/water separation. Adv Funct Mater. 2021; 31(49): 2104701.

[22]

Li C, Qin B, Zhang Y, et al. Single-ion conducting electrolyte based on electrospun nanofibers for high-performance lithium batteries. Adv Energy Mater. 2019; 9(10): 1803422.

[23]

Liu J, Mo Y, Wang S, et al. Ultrastrong and heat-resistant poly(ether ether ketone) separator for dendrite-proof and heat-resistant lithium-ion batteries. ACS Appl Energy Mater. 2019; 2(5): 3886-3895.

[24]

Li S, Zhang S, Shen L, et al. Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv Sci. 2020; 7(5): 1903088.

[25]

Hao Z, Wu Y, Zhao Q, et al. Functional separators regulating ion transport enabled by metal-organic frameworks for dendrite-free lithium metal anodes. Adv Funct Mater. 2021; 31(33): 2102938.

[26]

Guo C, Du K, Tao R, et al. Inorganic filler enhanced formation of stable inorganic-rich solid electrolyte interphase for high performance lithium metal batteries. Adv Energy Mater. 2023; 33(29): 2301111.

[27]

Zhu B, Jin Y, Hu X, et al. Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes. Adv Mater. 2017; 29(2): 1603755.

[28]

Zhang X, Su Q, Du G. Stabilizing solid-state lithium metal batteries through in situ generated Janus-heterarchical LiF-rich SEI in ionic liquid confined 3D MOF/polymer membranes. Angew Chem Inter Ed. 2023; 62(39): e202304947.

[29]

Zhang S, Xie B, Zhuang X, et al. Great challenges and new paradigm of the in situ polymerization technology inside lithium batteries. Adv Funct Mater. 2023;2314063.

[30]

Guo J, Feng F, Zhao S, et al. Achieving ultra-stable all-solid-state sodium metal batteries with anion-trapping 3D fiber network enhanced polymer electrolyte. Small. 2023; 19(16): 2206740.

[31]

Nie L, Gao R, Zhang M, et al. Integration of porous high-loading electrode and gel polymer electrolyte for high-performance quasi-solid-state battery. Adv Energy Mater. 2023; 14(4): 2302476.

[32]

Piao Z, Wu X, Ren H, et al. A Semisolvated sole-solvent electrolyte for high-voltage lithium metal batteries. J Am Chem Soc. 2023; 145(44): 24260-24271.

[33]

Zhang Y, Huang J, Liu H, et al. Lamellar ionic liquid composite electrolyte for wide-temperature solid-state lithium-metal battery. Adv Energy Mater. 2023; 13(23): 2300156.

[34]

Wang Z, Zhang Y, Zhang P, et al. Thermally rearranged covalent organic framework with flame-retardancy as a high safety Li-ion solid electrolyte. eScience. 2022; 2(3): 311-318.

[35]

Miao J, Yuan L, Guan Q, et al. Biobased heat resistant epoxy resin with extremely high biomass content from 2, 5-furandicarboxylic acid and eugenol. ACS Sustain Chem Eng. 2017; 5(8): 7003-7011.

[36]

Chen H, Wang J, Ni A, Ding A, Han X, Sun Z. The effects of a macromolecular charring agent with gas phase and condense phase synergistic flame retardant capability on the properties of PP/IFR composites. Materials. 2018; 11(1): 111.

[37]

Qi Y, Wang J, Kou Y, et al. Synthesis of an aromatic N-heterocycle derived from biomass and its use as a polymer feedstock. Nat Commun. 2019; 10(1): 2107.

[38]

Dong X, Chen L, Duan R, et al. Phenylmaleimide-containing PET-based copolyester: cross-linking from 2π + π cycloaddition toward flame retardance and anti-dripping. Polym Chem. 2016; 7(15): 2698-2708.

[39]

Qi Y, Weng Z, Kou Y, et al. Synthesize and introduce bio-based aromatic s-triazine in epoxy resin: enabling extremely high thermal stability, mechanical properties, and flame retardancy to achieve high-performance sustainable polymers. Chem Eng J. 2021; 406(15): 126881.

[40]

Pels J, Kapteijn F, Moulijn J, et al. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon. 1995; 33(11): 1641-1653.

[41]

Jabbari V, Yurkiv V, Rasul M. In situ formation of stable solid electrolyte interphase with high ionic conductivity for long lifespan all-solid-state lithium metal batteries. Energy Storage Mater. 2023; 57: 1-13.

[42]

Zhu C, Wu D, Wang Z, et al. Optimizing NaF-rich solid electrolyte interphase for stabilizing sodium metal batteries by electrolyte additive. Adv Funct Mater. 2023; 34(5): 2214195.

[43]

Zhang Q, Zhang X, Wan J, et al. Homogeneous and mechanically stable solid–electrolyte interphase enabled by trioxane-modulated electrolytes for lithium metal batteries. Nat Energy. 2023; 8(7): 725-735.

[44]

Weng S, Zhang X, Yang G, et al. Temperature-dependent interphase formation and Li+ transport in lithium metal batteries. Nat Commun. 2023; 14(1): 4474.

[45]

Song Z, Wang L, Jiang W, et al. “Like compatible like” strategy designing strong cathode-electrolyte Interface quasi-solid-state lithium–sulfur batteries. Adv Energy Mater. 2023; 14(4): 2302688.

[46]

Cheng X, Zhang R, Zhao C, et al. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev. 2017; 117(15): 10403-10473.

[47]

Cheng X, Yang S, Liu Z, et al. Electrochemically and thermally stable lnorganics-rich solidElectrolyte interphase for robust lithium metal batteries. Adv Mater. 2023; 36(1): 2307370.

[48]

Zhang C, Jin T, Liu J, et al. In situ formed gradient composite solid electrolyte interphase layer for stable lithium metal anodes. Small. 2023; 19(38): 2301523.

[49]

Shi P, Liu Z, Zhang X, et al. Polar interaction of polymer host–solvent enables stable solid electrolyte interphase in composite lithium metal anodes. J Energy Chem. 2022; 64: 172-178.

[50]

Liu L, Lyu J, Mo J, et al. Comprehensively-upgraded polymer electrolytes by multifunctional aramid nanofibers for stable all-solid-state Li-ion batteries. Nano Energy. 2020; 69: 104398.

[51]

Ma W, Li W, Jiang J, et al. Iodine-containing additive engineering for rejuvenating inactive lithium and constructing highly stable lithium metal anodes. Chem Eng J. 2023; 477(1): 146890.

RIGHTS & PERMISSIONS

2024 The Authors. InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

236

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/