Nanophononic metamaterials induced proximity effect in heat flux regulation

Jian Zhang, Haochun Zhang, Gang Zhang

Front. Phys. ›› 2024, Vol. 19 ›› Issue (2) : 23204.

PDF(7306 KB)
PDF(7306 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (2) : 23204. DOI: 10.1007/s11467-023-1349-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Nanophononic metamaterials induced proximity effect in heat flux regulation

Author information +
History +

Abstract

Recent studies have shown that the construction of nanophononic metamaterials can reduce thermal conductivity without affecting electrical properties, making them promising in many fields of application, such as energy conversion and thermal management. However, although extensive studies have been carried out on thermal conductivity reduction in nanophononic metamaterials, the local heat flux characteristic is still unclear. In this work, we construct a heat flux regulator which includes a silicon nanofilm with silicon pillars. The regulator has remarkable heat flux regulation ability, and various impacts on the regulation ability are explored. Surprisingly, even in the region without nanopillars, the local heat current is still lower than that in pristine silicon nanofilms, reduced by the neighboring nanopillars through the thermal proximity effect. We combine the analysis of the phonon participation ratio with the intensity of localized phonon modes to provide a clear explanation. Our findings not only provide insights into the mechanisms of heat flux regulation by nanophononic metamaterials, but also will open up new research directions to control local heat flux for a broad range of applications, including heat management, thermoelectric energy conversion, thermal cloak, and thermal concentrator.

Graphical abstract

Keywords

nanophononic metamaterials / proximity effect

Cite this article

Download citation ▾
Jian Zhang, Haochun Zhang, Gang Zhang. Nanophononic metamaterials induced proximity effect in heat flux regulation. Front. Phys., 2024, 19(2): 23204 https://doi.org/10.1007/s11467-023-1349-4

References

[1]
J. Chen , J. He , D. K. Pan , X. T. Wang , N. Yang , J. J. Zhu , S. Y. A. Yang , G. Zhang . Emerging theory and phenomena in thermal conduction: A selective review. Sci. China Phys. Mech. Astron., 2022, 65(11): 117002
CrossRef ADS Google scholar
[2]
Y. Liang , J. P. Huang . Robustness of critical points in a complex adaptive system: Effects of hedge behavior. Front. Phys., 2013, 8(4): 461
CrossRef ADS Google scholar
[3]
Z.Z. YuG.H. XiongL.F. Zhang, A brief review of thermal transport in mesoscopic systems from nonequilibrium Green’s function approach, Front. Phys. 16(4), 43201 (2021)
[4]
B. L. Davis , M. I. Hussein . Nanophononic metamaterial: Thermal conductivity reduction by local resonance. Phys. Rev. Lett., 2014, 112(5): 055505
CrossRef ADS Google scholar
[5]
H. Honarvar , M. I. Hussein . Two orders of magnitude reduction in silicon membrane thermal conductivity by resonance hybridizations. Phys. Rev. B, 2018, 97(19): 195413
CrossRef ADS Google scholar
[6]
Z. Wei , J. Yang , K. Bi , Y. Chen . Phonon transport properties in pillared silicon film. J. Appl. Phys., 2015, 118(15): 155103
CrossRef ADS Google scholar
[7]
S. Y. Xiong , K. Saaskilahti , Y. A. Kosevich , H. X. Han , D. Donadio , S. Volz . Blocking phonon transport by structural resonances in alloy-based nanophononic metamaterials leads to ultralow thermal conductivity. Phys. Rev. Lett., 2016, 117(2): 025503
CrossRef ADS Google scholar
[8]
H. Honarvar , L. Yang , M. I. Hussein . Thermal transport size effects in silicon membranes featuring nanopillars as local resonators. Appl. Phys. Lett., 2016, 108(26): 263101
CrossRef ADS Google scholar
[9]
J. Wang , G. Dai , J. P. Huang . Thermal metamaterial: Fundamental, application, and outlook. iScience, 2020, 23(10): 101637
CrossRef ADS Google scholar
[10]
D. Yudistira , A. Boes , B. Graczykowski , F. Alzina , L. Y. Yeo , C. M. Sotomayor Torres , A. Mitchell . Nanoscale pillar hypersonic surface phononic crystals. Phys. Rev. B, 2016, 94(9): 094304
CrossRef ADS Google scholar
[11]
B. Li , K. T. Tan , J. Christensen . Tailoring the thermal conductivity in nanophononic metamaterials. Phys. Rev. B, 2017, 95(14): 144305
CrossRef ADS Google scholar
[12]
X. Wan , D. K. Ma , D. K. Pan , L. N. Yang , N. Yang . Optimizing thermal transport in graphene nanoribbon based on phonon resonance hybridization. Mater. Today Phys., 2021, 20: 100445
CrossRef ADS Google scholar
[13]
H. Wang , Y. Cheng , Z. Fan , Y. Guo , Z. Zhang , M. Bescond , M. Nomura , T. Ala-Nissila , S. Volz , S. Xiong . Anomalous thermal conductivity enhancement in low dimensional resonant nanostructures due to imperfections. Nanoscale, 2021, 13(22): 10010
CrossRef ADS Google scholar
[14]
S. Neogi , D. Donadio . Anisotropic in-plane phonon transport in silicon membranes guided by nanoscale surface resonators. Phys. Rev. Appl., 2020, 14(2): 024004
CrossRef ADS Google scholar
[15]
S. Q. Hu , L. Feng , S. Cheng , Y. A. Kosevich , J. Shiomi . Two-path phonon interference resonance induces a stop band in a silicon crystal matrix with a multilayer array of embedded nanoparticles. Phys. Rev. B, 2020, 102(2): 024301
CrossRef ADS Google scholar
[16]
H. G. Zhang , B. Sun , S. Hu , H. Y. Wang , Y. J. Cheng , S. Y. Xiong , S. Volz , Y. X. Ni . Novel phonon resonator based on surface screw thread for suppressing thermal transport of Si nanowires. Phys. Rev. B, 2020, 101(20): 205418
CrossRef ADS Google scholar
[17]
T. Juntunen , O. Vänskä , I. Tittonen . Anderson localization quenches thermal transport in aperiodic superlattices. Phys. Rev. Lett., 2019, 122(10): 105901
CrossRef ADS Google scholar
[18]
Y. Y. Guo , M. Bescond , Z. W. Zhang , S. Y. Xiong , K. Hirakawa , M. Nomura , S. Volz . Thermal conductivity minimum of graded superlattices due to phonon localization. APL Mater., 2021, 9(9): 091104
CrossRef ADS Google scholar
[19]
R. Anufriev , J. Maire , M. Nomura . Review of coherent phonon and heat transport control in one-dimensional phononic crystals at nanoscale. APL Mater., 2021, 9(7): 070701
CrossRef ADS Google scholar
[20]
Z. W. Zhang , Y. Y. Guo , M. Bescond , J. Chen , M. Nomura , S. Volz . Coherent thermal transport in nano-phononic crystals: An overview. APL Mater., 2021, 9(8): 081102
CrossRef ADS Google scholar
[21]
Y. B. Jin , Y. Pennec , B. Bonello , H. Honarvar , L. Dobrzynski , B. Djafari-Rouhani , M. I. Hussein . Physics of surface vibrational resonances: pillared phononic crystals, metamaterials, and metasurfaces. Rep. Prog. Phys., 2021, 84(8): 086502
CrossRef ADS Google scholar
[22]
J. H. Ma . Phonon engineering of micro‐ and nanophononic crystals and acoustic metamaterials: A review. Small Sci., 2023, 3(1): 2200052
CrossRef ADS Google scholar
[23]
S. Plimpton . Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys., 1995, 117(1): 1
CrossRef ADS Google scholar
[24]
F. H. Stillinger , T. A. Weber . Computer simulation of local order in condensed phases of silicon. Phys. Rev. B Condens. Matter, 1985, 31(8): 5262
CrossRef ADS Google scholar
[25]
P. F. Zhuang , L. J. Xu , P. Tan , X. P. Ouyang , J. P. Huang . Breaking efficiency limit of thermal concentrators by conductivity couplings. Sci. China Phys. Mech. Astron., 2022, 65(11): 117007
CrossRef ADS Google scholar
[26]
S. Yang , J. Wang , G. L. Dai , F. B. Yang , J. P. Huang . Controlling macroscopic heat transfer with thermal metamaterials: Theory, experiment and application. Phys. Rep., 2021, 908: 1
CrossRef ADS Google scholar
[27]
Z. R. Zhang , L. J. Xu , T. Qu , M. Lei , Z. K. Lin , X. P. Ouyang , J. H. Jiang , J. P. Huang . Diffusion metamaterials. Nat. Rev. Phys., 2023, 5(4): 218
CrossRef ADS Google scholar
[28]
K. A. Dick , K. Deppert , M. W. Larsson , T. Martensson , W. Seifert , L. R. Wallenberg , L. Samuelson . Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events. Nat. Mater., 2004, 3(6): 380
CrossRef ADS Google scholar
[29]
N. Chekurov , K. Grigoras , A. Peltonen , S. Franssila , I. Tittonen . The fabrication of silicon nanostructures by local gallium implantation and cryogenic deep reactive ion etching. Nanotechnology, 2009, 20(6): 065307
CrossRef ADS Google scholar
[30]
Z. Huang , X. Zhang , M. Reiche , L. Liu , W. Lee , T. Shimizu , S. Senz , U. Göselee . Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching. Nano Lett., 2008, 8(9): 3046
CrossRef ADS Google scholar
[31]
J. M. Dickey , A. Paskin . Computer simulation of the lattice dynamics of solids. Phys. Rev., 1969, 188(3): 1407
CrossRef ADS Google scholar
[32]
G. C. Loh , E. H. T. Teo , B. K. Tay . Phonon localization around vacancies in graphene nanoribbons. Diamond Related Mater., 2012, 23: 88
CrossRef ADS Google scholar
[33]
Y. Wang , A. Vallabhaneni , J. N. Hu , B. Qiu , Y. P. Chen , X. L. Ruan . Phonon lateral confinement enables thermal rectification in asymmetric single-material nanostructures. Nano Lett., 2014, 14(2): 592
CrossRef ADS Google scholar
[34]
T. Liang , M. Zhou , P. Zhang , P. Yuan , D. G. Yang . Multilayer in-plane graphene/hexagonal boron nitride heterostructures: Insights into the interfacial thermal transport properties. Int. J. Heat Mass Transf., 2020, 151: 119395
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Data availability statements

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.1007/s11467-023-1349-4 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-023-1349-4.

Acknowledgements

J. Zhang gratefully acknowledges the financial support from the China Scholarship Council (No. 202206120136).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(7306 KB)

Accesses

Citations

Detail

Sections
Recommended

/