Janus monolayer TaNF: A new ferrovalley material with large valley splitting and tunable magnetic properties

Guibo Zheng, Shuixian Qu, Wenzhe Zhou, Fangping Ouyang

Front. Phys. ›› 2023, Vol. 18 ›› Issue (5) : 53302.

PDF(5798 KB)
PDF(5798 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (5) : 53302. DOI: 10.1007/s11467-023-1285-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Janus monolayer TaNF: A new ferrovalley material with large valley splitting and tunable magnetic properties

Author information +
History +

Abstract

Materials with large intrinsic valley splitting and high Curie temperature are a huge advantage for studying valleytronics and practical applications. In this work, using first-principles calculations, a new Janus TaNF monolayer is predicted to exhibit excellent piezoelectric properties and intrinsic valley splitting, resulting from the spontaneous spin polarization, the spatial inversion symmetry breaking and strong spin−orbit coupling (SOC). TaNF is also a potential two-dimensional (2D) magnetic material due to its high Curie temperature and large magnetic anisotropy energy. The effective control of the band gap of TaNF can be achieved by biaxial strain, which can transform TaNF monolayer from semiconductor to semi-metal. The magnitude of valley splitting at the CBM can be effectively tuned by biaxial strain due to the changes of orbital composition at the valleys. The magnetic anisotropy energy (MAE) can be manipulated by changing the energy and occupation (unoccupation) states of d orbital compositions through biaxial strain. In addition, Curie temperature reaches 373 K under only −3% biaxial strain, indicating that Janus TaNF monolayer can be used at high temperatures for spintronic and valleytronic devices.

Graphical abstract

Keywords

Janus / valley splitting / Curie temperature / magnetic anisotropy energy / first-principles calculations

Cite this article

Download citation ▾
Guibo Zheng, Shuixian Qu, Wenzhe Zhou, Fangping Ouyang. Janus monolayer TaNF: A new ferrovalley material with large valley splitting and tunable magnetic properties. Front. Phys., 2023, 18(5): 53302 https://doi.org/10.1007/s11467-023-1285-3

References

[1]
J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, X. Xu. Valleytronics in 2D materials. Nat. Rev. Mater., 2016, 1(11): 16055
CrossRef ADS Google scholar
[2]
Y. P. Feng, L. Shen, M. Yang, A. Wang, M. Zeng, Q. Wu, S. Chintalapati, C. R. Chang. Prospects of spintronics based on 2D materials. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2017, 7(5): e1313
CrossRef ADS Google scholar
[3]
Y. Y. Wang, F. P. Li, W. Wei, B. B. Huang, Y. Dai. Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides. Front. Phys., 2021, 16(1): 13501
CrossRef ADS Google scholar
[4]
P. Y. Gao, B. Gao, S. H. Lu, J. Lv, Y. C. Wang, Y. M. Ming. Structure search of two-dimensional systems using CALYPSO methodology. Front. Phys., 2022, 17(2): 23203
CrossRef ADS Google scholar
[5]
H. Z. Lu, W. Yao, D. Xiao, S. Q. Shen. Intervalley scattering and localization behaviors of spin-valley coupled Dirac fermions. Phys. Rev. Lett., 2013, 110(1): 016806
CrossRef ADS Google scholar
[6]
O. L. Sanchez, D. Ovchinnikov, S. Misra, A. Allain, A. Kis. Valley polarization by spin injection in a light-emitting van der Waals heterojunction. Nano Lett., 2016, 16(9): 5792
CrossRef ADS Google scholar
[7]
W. Zhou, J. Chen, Z. Yang, J. Liu, F. Ouyang. Geometry and electronic structure of monolayer, bilayer, and multilayer Janus WSSe. Phys. Rev. B, 2019, 99(7): 075160
CrossRef ADS Google scholar
[8]
Z. C. Zhou, F. Y. Yang, S. Wang, L. Wang, S. F. Wang, C. Wang, Y. Xie, Q. Liu. Emerging of two-dimensional materials in novel memristor. Front. Phys., 2022, 17(2): 23204
CrossRef ADS Google scholar
[9]
J.X. WenH. WangH.J. ChenS.Z. DengN.S. Xu, Room-temperature strong coupling between dipolar plasmon resonance in single gold nanorod and two-dimensional excitons in monolayer WSe2, Chin. Phys. B 27 09610 (2018)
[10]
Y. P. Liu, Y. J. Gao, S. Y. Zhang, J Yu, He W. Liu. Valleytronics in transition metal dichalcogenides materials. Nano Res., 2019, 12: 2695
CrossRef ADS Google scholar
[11]
X. Li, N. Luo, Y. Chen, X. Zou, H. Zhu. Real-time observing ultrafast carrier and phonon dynamics in colloidal tin chalcogenide van der Waals nanosheets. J. Phys. Chem. Lett., 2019, 10(13): 3750
CrossRef ADS Google scholar
[12]
P. X. Nguyen, W. K. Tse. Photoinduced anomalous Hall effect in two-dimensional transition metal dichalcogenides. Phys. Rev. B, 2021, 103(12): 125420
CrossRef ADS Google scholar
[13]
R. Peng, Y. Ma, S. Zhang, B. Huang, Y. Dai. Valley polarization in Janus single-layer MoSSe via magnetic doping. J. Phys. Chem. Lett., 2018, 9(13): 3612
CrossRef ADS Google scholar
[14]
L. T. Nguyen, K. P. Dhakal, Y. Lee, W. Choi, T. D. Nguyen, C. Hong, D. H. Luong, Y. M. Kim, J. Kim, M. Lee, T. Choi, A. J. Heinrich, J. H. Kim, D. Lee, D. L. Duong, Y. H. Lee. Spin-selective hole–exciton coupling in a v-doped WSe2 ferromagnetic semiconductor at room temperature. ACS Nano, 2021, 15(12): 20267
CrossRef ADS Google scholar
[15]
W. Zhou, Z. Yang, A. Li, M. Long, F. Ouyang. Spin and valley splittings in Janus monolayer WSSe on a MnO(111) surface: Large effective Zeeman field and opening of a helical gap. Phys. Rev. B, 2020, 101(4): 045113
CrossRef ADS Google scholar
[16]
X. Zhao, F. Liu, J. Ren, F. Qu. Valleytronic and magneto-optical properties of Janus and conventional TiBrI/CrI3 and TiX2/CrI3 (X = Br, I) heterostructures. Phys. Rev. B, 2021, 104(8): 085119
CrossRef ADS Google scholar
[17]
X. D. Zhu, Y. Q. Chen, Z. Liu, Y. L. Han, Z. H. Qiao. Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials. Front. Phys., 2023, 18(2): 23302
CrossRef ADS Google scholar
[18]
G. B. Zheng, B. Zhang, H. M. Duan W. Z. Zhou, F. P. Ouyang. Magnetic proximity controlled Rashba and valley splittings in monolayer Janus ZrNX/VTe2 (X = Br, I) heterostructure. Physica E, 2023, 148: 115616
CrossRef ADS Google scholar
[19]
C. J. Zou, C. X. Cong, J. Z. Shang, C. Zhao, M. Eginligil, L. S. Wu, Y. Chen, H. B. Zhang, S. Feng, J. Zhang, H. Zeng, W. Huang, T. Yu. Probing magnetic-proximity-effect enlarged valley splitting in monolayer WSe2 by photoluminescence. Nano Res., 2018, 11: 6252
CrossRef ADS Google scholar
[20]
W. Y. Tong, S. J. Gong, X. Wan, C. G. Duan. Concepts of ferrovalley material and anomalous valley Hall effect. Nat. Commun., 2016, 7(1): 13612
CrossRef ADS Google scholar
[21]
X. W. Shen, W. Y. Tong, S. J. Gong, C. G. Duan. Electrically tunable polarizer based on 2D orthorhombic ferrovalley materials. 2D Mater., 2018, 5: 011001
CrossRef ADS Google scholar
[22]
F. Zhang, W. Mi, X. Wang. Tunable valley and spin splitting in 2H-VSe2/BiFeO3 (111) triferroic heterostructures. Nanoscale, 2019, 11(21): 10329
CrossRef ADS Google scholar
[23]
Y. Zhu, Q. Cui, Y. Ga, J. Liang, H. Yang. Anomalous valley Hall effect in A-type antiferromagnetic van der Waals heterostructures. Phys. Rev. B, 2022, 105(13): 134418
CrossRef ADS Google scholar
[24]
W. Y. Tong, C. G. Duan. Electrical control of the anomalous valley Hall effect in antiferrovalley bilayers. npj Quantum Mater., 2017, 2: 47
CrossRef ADS Google scholar
[25]
H. Hu, W. Y. Tong, Y. H. Shen, C. G. Duan. Electrical control of the valley degree of freedom in 2D ferroelectric/antiferromagnetic heterostructures. J. Mater. Chem. C, 2020, 8(24): 8098
CrossRef ADS Google scholar
[26]
D. Zhang, A. Li, X. Chen, W. Zhou, F. Ouyang, Tuning valley splitting, magnetic anisotropy of multiferroic CuMP2X6 (M = Cr, V; X = S. Se) monolayer. Phys. Rev. B, 2022, 105(8): 085408
CrossRef ADS Google scholar
[27]
K. Sheng, H. K. Yuan, Z. Y. Wang, Monolayer gadolinium halides, GdX2 (X = F. Br): Intrinsic ferrovalley materials with spontaneous spin and valley polarizations. Phys. Chem. Chem. Phys., 2022, 24(6): 3865
CrossRef ADS Google scholar
[28]
B. Huang, W. Liu, X. Wu, S. Z. Li, H. Li, Z. Yang, W. B. Zhang, Large spontaneous valley polarization, high magnetic transition temperature in stable two-dimensional ferrovalley YX2 (X = I. Br, and Cl). Phys. Rev. B, 2023, 107(4): 045423
CrossRef ADS Google scholar
[29]
H. Hu, W. Y. Tong, Y. H. Shen, X. Wan, C. G. Duan. Concepts of the half-valley-metal and quantum anomalous valley Hall effect. npj Comput. Mater., 2020, 6: 129
CrossRef ADS Google scholar
[30]
R. J. Sun, J. J. Lu, X. W. Zhao, G. C. Hu, X. B. Yuan, J. F. Ren, Robust valley polarization induced by super-exchange effects in HfNX (X = Cl. Br, I)/FeCl2 two-dimensional ferrovalley heterostructures. Appl. Phys. Lett., 2022, 120(6): 063103
CrossRef ADS Google scholar
[31]
S. D. Guo, Y. L. Tao, W. Q. Mu, B. G. Liu. Correlation-driven threefold topological phase transition in monolayer OsBr2. Front. Phys., 2023, 18(3): 33304
CrossRef ADS Google scholar
[32]
Y. F. Zhao, Y. H. Shen, H. Hu, W. Y. Tong, C. G. Duan. Combined piezoelectricity and ferrovalley properties in Janus monolayer VClBr. Phys. Rev. B, 2021, 103(11): 115124
CrossRef ADS Google scholar
[33]
C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, X. Zhang. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546(7657): 265
CrossRef ADS Google scholar
[34]
L. Liu, X. Ren, J. Xie, B. Cheng, W. Liu, T. An, H. Qin, J. Hu. Magnetic switches via electric field in BN nanoribbons. Appl. Surf. Sci., 2019, 480: 300
CrossRef ADS Google scholar
[35]
P. E. Blöchl. Projector augmented-wave method. Phys. Rev. B, 1994, 50(24): 17953
CrossRef ADS Google scholar
[36]
G. Kresse, J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
CrossRef ADS Google scholar
[37]
J. P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
CrossRef ADS Google scholar
[38]
G. Kresse, D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3): 1758
CrossRef ADS Google scholar
[39]
S. Dudarev, G. Botton, S. Savrasov, C. Humphreys, A. Sutton. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B, 1998, 57(3): 1505
CrossRef ADS Google scholar
[40]
H. J. Kulik, M. Cococcioni, D. A. Scherlis, N. Marzari. Density functional theory in transition-metal chemistry: A self-consistent Hubbard U approach. Phys. Rev. Lett., 2006, 97(10): 103001
CrossRef ADS Google scholar
[41]
J.J. ZhouJ. ParkI.TimrovA.FlorisM.CococcioniN.MarzariM.Bernardi, Ab initio electron-phonon interactions in correlated electron systems, Phys. Rev. Lett. 127(12), 126404 (2021)
[42]
J. H. Shim, H. Kang, S. Lee, Y. M. Kim. Utilization of electron-beam irradiation under atomic-scale chemical mapping for evaluating the cycling performance of lithium transition metal oxide cathodes. J. Mater. Chem. A, 2021, 9(4): 2429
CrossRef ADS Google scholar
[43]
Y. Yang, J. Li, C. Zhang, Z. Yang, P. Sun, S. Liu, Q. Cao, Theoretical insights into nitrogen-doped graphene-supported Fe. Co, and Ni as single-atom catalysts for CO2 reduction reaction. J. Phys. Chem. C, 2022, 126(9): 4338
CrossRef ADS Google scholar
[44]
A. Togo, I. Tanaka. First principles phonon calculations in materials science. Scr. Mater., 2015, 108: 1
CrossRef ADS Google scholar
[45]
R. N. Barnett, U. Landman. Born−Oppenheimer molecular-dynamics simulations of finite systems: Structure and dynamics of (H2O)2. Phys. Rev. B, 1993, 48(4): 2081
CrossRef ADS Google scholar
[46]
P. Wang, Y. Zong, H. Liu, H. Wen, H. B. Wu, J. B. Xia. Highly efficient photocatalytic water splitting and enhanced piezoelectric properties of 2D Janus group-III chalcogenides. J. Mater. Chem. C, 2021, 9(14): 4989
CrossRef ADS Google scholar
[47]
S. Choopani, M. M. Alyörük. Piezoelectricity in two-dimensional aluminum, boron and Janus aluminum-boron monochalcogenide monolayers. J. Phys. D Appl. Phys., 2022, 55(15): 155301
CrossRef ADS Google scholar
[48]
K. A. N. Duerloo, M. T. Ong, E. J. Reed. Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett., 2012, 3(19): 2871
CrossRef ADS Google scholar
[49]
L. Dong, J. Lou, V. B. Shenoy. Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides. ACS Nano, 2017, 11(8): 8242
CrossRef ADS Google scholar
[50]
M. K. Mohanta, H. Seksaria, A. De Sarkar. Insights into CrS2 monolayer and n-CrS2/p-HfN2 interface for low-power digital and analog nanoelectronics. Appl. Surf. Sci., 2022, 579: 152211
CrossRef ADS Google scholar
[51]
S. Feng, W. Mi. Strain and interlayer coupling tailored magnetic properties and valley splitting in layered ferrovalley 2H-VSe2. Appl. Surf. Sci., 2018, 458: 191
CrossRef ADS Google scholar
[52]
R. J. Sun, R. Liu, J. J. Lu, X. W. Zhao, G. C. Hu, X. B. Yuan, J. F. Ren, Reversible switching of anomalous valley Hall effect in ferrovalley Janus 1T-CrOX (X = F. Br, I) and the multiferroic heterostructure CrOX/In2Se3. Phys. Rev. B, 2022, 105(23): 235416
CrossRef ADS Google scholar
[53]
C. Wang, Y. An. Effects of strain and stacking patterns on the electronic structure, valley polarization and magnetocrystalline anisotropy of layered VTe2. Appl. Surf. Sci., 2021, 538: 148098
CrossRef ADS Google scholar
[54]
E. Torun, H. Sahin, S. Singh, F. Peeters. Stable half-metallic monolayers of FeCl2. Appl. Phys. Lett., 2015, 106(19): 192404
CrossRef ADS Google scholar
[55]
S. Sarkar, P. Kratzer, Magnetic exchange interactions in bilayer Cr X3 (X =Cl. Br, and I): A critical assessment of the DFT + U approach. Phys. Rev. B, 2021, 103(22): 224421
CrossRef ADS Google scholar
[56]
C. Xu, Q. J. Wang, B. Xu, J. Hu. Effect of biaxial strain and hydrostatic pressure on the magnetic properties of bilayer CrI3. Front. Phys., 2021, 16: 53502
CrossRef ADS Google scholar
[57]
X. Y. Yu, X. Zhang, Q. Shi, H. C. Lei, K. Xu, H. D. Hosono. Large magnetocaloric effect in van der Waals crystal CrBr3. Front. Phys., 2019, 14: 43501
CrossRef ADS Google scholar
[58]
H.D. WangP. H. LeiX.Y. MaoX.KongX.Y. Ye P.F. WangY. WangX.QinJ.MeijerH.L. Zeng, Magnetic phase transition in two-dimensional CrBr3 probed by a quantum sensor, Chin. Phys. Lett. 39 047601 (2022)
[59]
J. C. Zhong, M. S. Wang, T. Liu, Y. H. Zhao, X. Xu, S. S. Zhou, J. B. Han, L. Gan, T. Y. Zhai. Strain-sensitive ferromagnetic two-dimensional Cr2Te3. Nano Res., 2022, 15: 1254
CrossRef ADS Google scholar
[60]
M. Liu, Y. L. Huang, J. Gou, Q. Liang, R. Chua, Arramel Duan, S. Zhang, L. L. Cai, L. Yu, X. Zhong, D. Zhang, W. T. S. Wee. Diverse structures and magnetic properties in nonlayered monolayer chromium selenide. J. Phys. Chem. Lett., 2021, 12(32): 7752
CrossRef ADS Google scholar

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(5798 KB)

Accesses

Citations

Detail

Sections
Recommended

/