Remote preparation for single-photon state in two degrees of freedom with hyper-entangled states

Mei-Yu Wang, Fengli Yan, Ting Gao

PDF(879 KB)
PDF(879 KB)
Front. Phys. ›› 2021, Vol. 16 ›› Issue (4) : 41501. DOI: 10.1007/s11467-021-1059-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Remote preparation for single-photon state in two degrees of freedom with hyper-entangled states

Author information +
History +

Abstract

Remote state preparation (RSP) provides a useful way of transferring quantum information between two distant nodes based on the previously shared entanglement. In this paper, we study RSP of an arbitrary single-photon state in two degrees of freedom (DoFs). Using hyper-entanglement as a shared resource, our first goal is to remotely prepare the single-photon state in polarization and frequency DoFs and the second one is to reconstruct the single-photon state in polarization and time-bin DoFs. In the RSP process, the sender will rotate the quantum state in each DoF of the photon according to the knowledge of the state to be communicated. By performing a projective measurement on the polarization of the sender’s photon, the original single-photon state in two DoFs can be remotely reconstructed at the receiver’s quantum systems. This work demonstrates a novel capability for longdistance quantum communication.

Keywords

remote state preparation / hyper-entanglement

Cite this article

Download citation ▾
Mei-Yu Wang, Fengli Yan, Ting Gao. Remote preparation for single-photon state in two degrees of freedom with hyper-entangled states. Front. Phys., 2021, 16(4): 41501 https://doi.org/10.1007/s11467-021-1059-8

References

[1]
C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
CrossRef ADS Google scholar
[2]
C. H. Bennett and S. J. Wiesner, Communication via oneand two-particle operators on Einstein–Podolsky–Rosen states, Phys. Rev. Lett. 69(20), 2881 (1992)
CrossRef ADS Google scholar
[3]
A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67(6), 661 (1991)
CrossRef ADS Google scholar
[4]
M. Hillery, V. Bužek, and A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59(3), 1829 (1999)
CrossRef ADS Google scholar
[5]
G. L. Long and X. S. Liu, Theoretically efficient highcapacity quantum-key-distribution scheme, Phys. Rev. A 65(3), 032302 (2002)
CrossRef ADS Google scholar
[6]
F. G. Deng, G. L. Long, and X. S. Liu, Two-step quantum direct communication protocol using the Einstein– Podolsky–Rosen pair block, Phys. Rev. A 68(4), 042317 (2003)
CrossRef ADS Google scholar
[7]
H. K. Lo, Classical-communication cost in distributed quantum-information processing: A generalization of quantumcommunication complexity, Phys. Rev. A 62(1), 012313 (2000)
CrossRef ADS Google scholar
[8]
A. K. Pati, Minimum classical bit for remote preparation and measurement of a qubit, Phys. Rev. A 63(1), 014302 (2000)
CrossRef ADS Google scholar
[9]
C. H. Bennett, D. P. DiVincenzo, P. W. Shor, J. A. Smolin, B. M. Terhal, and W. K. Wootters, Remote state preparation, Phys. Rev. Lett. 87(7), 077902 (2001)
CrossRef ADS Google scholar
[10]
L. Qi, G. L. Wang, S. T. Liu, S. Zhang, and H. F. Wang, Dissipation-induced topological phase transition and periodicdriving-induced photonic topological state transfer in a small optomechanical lattice, Front. Phys. 16(1), 12503 (2021)
CrossRef ADS Google scholar
[11]
I. Devetak and T. Berger, Low-entanglement remote state preparation, Phys. Rev. Lett. 87(19), 197901 (2001)
CrossRef ADS Google scholar
[12]
B. Zeng and P. Zhang, Remote-state preparation in higher dimension and the parallelizable manifold Sn 1, Phys. Rev. A 65(2), 022316 (2002)
CrossRef ADS Google scholar
[13]
D. W. Berry and B. C. Sanders, Optimal remote state preparation, Phys. Rev. Lett. 90(5), 057901 (2003)
CrossRef ADS Google scholar
[14]
D. W. Leung and P. W. Shor, Oblivious remote state preparation, Phys. Rev. Lett. 90(12), 127905 (2003)
CrossRef ADS Google scholar
[15]
Y. X. Huang and M. S. Zhan, Remote preparation of multipartite pure state, Phys. Lett. A 327(5–6), 404 (2004)
CrossRef ADS Google scholar
[16]
Z. Kurucz, P. Adam, Z. Kis, and J. Janszky, Continuous variable remote state preparation, Phys. Rev. A 72(5), 052315 (2005)
CrossRef ADS Google scholar
[17]
Z. Kurucz, P. Adam, and J. Janszky, General criterion for oblivious remote state preparation, Phys. Rev. A 73(6), 062301 (2006)
CrossRef ADS Google scholar
[18]
B. A. Nguyen and J. Kim, Joint remote state preparation, J. Phys. B 41(9), 095501 (2008)
CrossRef ADS Google scholar
[19]
N. B. An, C. T. Bich, and N. V. Don, Deterministic joint remote state preparation, Phys. Lett. A 375(41), 3570 (2011)
CrossRef ADS Google scholar
[20]
D. Zhang, X. W. Zha, Y. J. Duan, and Y. Q. Yang, Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state, Quantum Inform. Process. 15(5), 2169 (2016)
CrossRef ADS Google scholar
[21]
X. B. Chen, Y. R. Sun, G. Xu, H. Y. Jia, Z. Qu, and Y.X. Yang, Controlled bidirectional remote preparation of three-qubit state, Quantum Inform. Process. 16(10), 244 (2017)
CrossRef ADS Google scholar
[22]
C. Y. Zhang, M. Q. Bai, and S. Q. Zhou, Cyclic joint remote state preparation in noisy environment, Quantum Inform. Process. 17(6), 146 (2018)
CrossRef ADS Google scholar
[23]
Y. J. Qian, S. B. Xue, and M. Jiang, Deterministic remote preparation of arbitrary single-qubit state via one intermediate node in noisy environment, Phys. Lett. A 384(10), 126204 (2020)
CrossRef ADS Google scholar
[24]
T. Dash, R. Sk, and P. K. Panigrahi, Deterministic joint remote state preparation of arbitrary two-qubit state through noisy cluster-GHZ channel, Opt. Commun. 464, 125518 (2020)
CrossRef ADS Google scholar
[25]
J. Laurat, T. Coudreau, N. Treps, A. Ma ıtre, and C. Fabre, Conditional preparation of a quantum state in the continuous variable regime: Generation of a subpoissonian state from twin beams, Phys. Rev. Lett. 91(21), 213601 (2003)
CrossRef ADS Google scholar
[26]
S. A. Babichev, B. Brezger, and A. I. Lvovsky, Remote preparation of a single-mode photonic qubit by measuring field quadrature noise, Phys. Rev. Lett. 92(4), 047903 (2004)
CrossRef ADS Google scholar
[27]
G. Y. Xiang, J. Li, B. Yu, and G. C. Guo, Remote preparation of mixed states via noisy entanglement, Phys. Rev. A 72(1), 012315 (2005)
CrossRef ADS Google scholar
[28]
N. A. Peters, J. T. Barreiro, M. E. Goggin, T. C. Wei, and P. G. Kwiat, Remote state preparation: Arbitrary remote control of photon polarization, Phys. Rev. Lett. 94(15), 150502 (2005)
CrossRef ADS Google scholar
[29]
W. T. Liu, W. Wu, B. Q. Ou, P. X. Chen, C. Z. Li, and J. M. Yuan, Experimental remote preparation of arbitrary photon polarization states, Phys. Rev. A 76(2), 022308 (2007)
CrossRef ADS Google scholar
[30]
H. Mikami and T. Kobayashi, Remote preparation of qutrit states with biphotons, Phys. Rev. A 75(2), 022325 (2007)
CrossRef ADS Google scholar
[31]
W. Wu, W. T. Liu, P. X. Chen, and C. Z. Li, Deterministic remote preparation of pure and mixed polarization states, Phys. Rev. A 81(4), 042301 (2010)
CrossRef ADS Google scholar
[32]
N. Killoran, D. N. Biggerstaff, R. Kaltenbaek, K. J. Resch, and N. Lütkenhaus, Derivation and experimental test of fidelity benchmarks for remote preparation of arbitrary qubit states, Phys. Rev. A 81(1), 012334 (2010)
CrossRef ADS Google scholar
[33]
M. A. Solís-Prosser and L. Neves, Remote state preparation of spatial qubits, Phys. Rev. A 84(1), 012330 (2011)
CrossRef ADS Google scholar
[34]
M. Rådmark, M. Wiesniak, M. Zukowski, and M. Bourennane, Experimental multilocation remote state preparation, Phys. Rev. A 88(3), 032304 (2013)
CrossRef ADS Google scholar
[35]
Y. S. Ra, H. T. Lim, and Y. H. Kim, Remote preparation of three-photon entangled states via single-photon measurement, Phys. Rev. A 94(4), 042329 (2016)
CrossRef ADS Google scholar
[36]
M. C. Dheur, B. Vest, E. Devaux, A. Baron, J. P. Hugonin, J. J. Greffet, G. Messin, and F. Marquier, Remote preparation of single-plasmon states, Phys. Rev. B 96(4), 045432 (2017)
CrossRef ADS Google scholar
[37]
H. Le Jeannic, A. Cavaillès, J. Raskop, K. Huang, and J. Laurat, Remote preparation of continuous-variable qubits using loss-tolerant hybrid entanglement of light, Optica 5(8), 1012 (2018)
CrossRef ADS Google scholar
[38]
P. G. Kwiat and H. Weinfurter, Embedded Bell-state analysis, Phys. Rev. A 58(4), R2623 (1998)
CrossRef ADS Google scholar
[39]
S. P. Walborn, S. Pádua, and C. H. Monken, Hyperentanglement-assisted Bell-state analysis, Phys. Rev. A 68(4), 042313 (2003)
CrossRef ADS Google scholar
[40]
C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, Complete deterministic linear optics Bell state analysis, Phys. Rev. Lett. 96(19), 190501 (2006)
CrossRef ADS Google scholar
[41]
M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement, Phys. Rev. A 75(4), 042317 (2007)
CrossRef ADS Google scholar
[42]
Y. B. Sheng, F. G. Deng, and G. L. Long, Complete hyperentangled-Bell-state analysis for quantum communication, Phys. Rev. A 82(3), 032318 (2010)
CrossRef ADS Google scholar
[43]
X. H. Li and S. Ghose, Self-assisted complete maximally hyperentangled state analysis via the cross-Kerr nonlinearity, Phys. Rev. A 93(2), 022302 (2016)
CrossRef ADS Google scholar
[44]
G. Y. Wang, B. C. Ren, F. G. Deng, and G. L. Long, Complete analysis of hyperentangled Bell states assisted with auxiliary hyperentanglement, Opt. Express 27(6), 8994 (2019)
CrossRef ADS Google scholar
[45]
T. J. Wang, S. Y. Song, and G. L. Long, Quantum repeater based on spatial entanglement of photons and quantumdot spins in optical microcavities, Phys. Rev. A 85(6), 062311 (2012)
CrossRef ADS Google scholar
[46]
B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities, Opt. Express 20(22), 24664 (2012)
CrossRef ADS Google scholar
[47]
X. H. Li and S. Ghose, Complete hyperentangled Bell state analysis for polarization and time-bin hyperentanglement, Opt. Express 24(16), 18388 (2016)
CrossRef ADS Google scholar
[48]
H. Wang, B. C. Ren, A. H. Wang, A. Alsaedi, T. Hayat, and F. G. Deng, General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics, Front. Phys. 13(5), 130315 (2018)
CrossRef ADS Google scholar
[49]
J. Liu, L. Zhou, W. Zhong, and Y. B. Sheng, Logic Bell state concentration with parity check measurement, Front. Phys. 14(2), 21601 (2019)
CrossRef ADS Google scholar
[50]
C. Simon and J. W. Pan, Polarization entanglement purification using spatial entanglement, Phys. Rev. Lett. 89(25), 257901 (2002)
CrossRef ADS Google scholar
[51]
A. Yabushita and T. Kobayashi, Spectroscopy by frequency-entangled photon pairs, Phys. Rev. A 69(1), 013806 (2004)
CrossRef ADS Google scholar
[52]
J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, Generation of hyperentangled photon pairs, Phys. Rev. Lett. 95(26), 260501 (2005)
CrossRef ADS Google scholar
[53]
M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, Polarization-momentum hyperentangled states: Realization and characterization, Phys. Rev. A 72(5), 052110 (2005)
CrossRef ADS Google scholar
[54]
A. Rossi, G. Vallone, A. Chiuri, F. De Martini, and P. Mataloni, Mulipath entanglement of two photons, Phys. Rev. Lett. 102(15), 153902 (2009)
CrossRef ADS Google scholar
[55]
G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, Hyperentanglement of two photons in three degrees of freedom, Phys. Rev. A 79(3), 030301 (2009)
CrossRef ADS Google scholar
[56]
W. B. Gao, C. Y. Lu, X. C. Yao, P. Xu, O. Guhne, A. Goebel, Y. A. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, Experimental demonstration of a hyperentangled tenqubit Schrödinger cat state, Nat. Phys. 6(5), 331 (2010)
CrossRef ADS Google scholar
[57]
D. Bhatti, J. von Zanthier, and G. S. Agarwal, Entanglement of polarization and orbital angular momentum, Phys. Rev. A 91(6), 062303 (2015)
CrossRef ADS Google scholar
[58]
M. Prilmüller, T. Huber, M. Müller, P. Michler, G. Weihs, and A. Predojević, Hyperentanglement of photons emitted by a quantum dot, Phys. Rev. Lett. 121(11), 110503 (2018)
CrossRef ADS Google scholar
[59]
X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Quantum teleportation of multiple degrees of freedom of a single photon, Nature 518(7540), 516 (2015)
CrossRef ADS Google scholar
[60]
J. T. Barreiro, T. C. Wei, and P. G. Kwiat, Beating the channel capacity limit for linear photonic superdense coding, Nat. Phys. 4(4), 282 (2008)
CrossRef ADS Google scholar
[61]
J. T. Barreiro, T. C. Wei, and P. G. Kwiat, Remote preparation of single-photon hybrid entangled and vectorpolarization states, Phys. Rev. Lett. 105(3), 030407 (2010)
CrossRef ADS Google scholar
[62]
P. Zhou, X. F. Jiao, and S. X. Lv, Parallel remote state preparation of arbitrary single-qubit states via linear optical elements by using hyperentangled Bell states as the quantum channel, Quantum Inform. Process. 17(11), 298 (2018)
CrossRef ADS Google scholar
[63]
X. F. Jiao, P. Zhou, S. X. Lv, and Z. Y. Wang, Remote preparation for single-photon two-qubit hybrid state with hyperentanglement via linear optical elements, Sci. Rep. 9(1), 4663 (2019)
CrossRef ADS Google scholar
[64]
A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength, New J. Phys. 12(10), 103005 (2010)
CrossRef ADS Google scholar
[65]
C. Chen, E. Y. Zhu, A. Riazi, A. V. Gladyshev, C. Corbari, M. Ibsen, P. G. Kazansky, and L. Qian, Compensation-free broadband entangled photon pair sources, Opt. Express 25(19), 22667 (2017)
CrossRef ADS Google scholar
[66]
M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, Experimental realization of any discrete unitary operator, Phys. Rev. Lett. 73(1), 58 (1994)
CrossRef ADS Google scholar
[67]
R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, Experimental investigation of the robustness of partially entangled qubits over 11 km, Phys. Rev. A 66(6), 062304 (2002)
CrossRef ADS Google scholar
[68]
I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, Distribution of time-bin entangled qubits over 50 km of optical fiber, Phys. Rev. Lett. 93(18), 180502 (2004)
CrossRef ADS Google scholar
[69]
T. Inagaki, N. Matsuda, O. Tadanaga, M. Asobe, and H. Takesue, Entanglement distribution over 300 km of fiber, Opt. Express 21(20), 23241 (2013)
CrossRef ADS Google scholar
[70]
R. Valivarthi, M. G. Puigibert, Q. Zhou, G. H. Aguilar, V. B. Verma, F. Marsili, M. D. Shaw, S. W. Nam, D. Oblak, and W. Tittel, Quantum teleportation across a metropolitan fibre network, Nat. Photon. 10(10), 676 (2016)
CrossRef ADS Google scholar
[71]
Q. C. Sun, Y. L. Mao, S. J. Chen, W. Zhang, Y. F. Jiang, Y. B. Zhang, W. J. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T. Y. Chen, L. X. You, X. F. Chen, Z. Wang, J. Y. Fan, Q. Zhang, and J. W. Pan, Quantum teleportation with independent sources and prior entanglement distribution over a network, Nat. Photon. 10(10), 671 (2016)
CrossRef ADS Google scholar
[72]
J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, Pulsed energy-time entangled twin-photon source for quantum communication, Phys. Rev. Lett. 82(12), 2594 (1999)
CrossRef ADS Google scholar
[73]
C. Simon and J. P. Poizat, Creating single time-binentangled photon pairs, Phys. Rev. Lett. 94(3), 030502 (2005)
CrossRef ADS Google scholar
[74]
A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, J. Majer, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Approaching unit visibility for control of a superconducting qubit with dispersive readout, Phys. Rev. Lett. 95(6), 060501 (2005)
CrossRef ADS Google scholar
[75]
A. Zavatta, M. D′ Angelo, V. Parigi, and M. Bellini, Remote preparation of arbitrary time-encoded single-photon ebits, Phys. Rev. Lett. 96(2), 020502 (2006)
CrossRef ADS Google scholar
[76]
J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, Generation of hyperentangled photon pairs, Phys. Rev. Lett. 95(26), 260501 (2005)
CrossRef ADS Google scholar
[77]
D. Kalamidas, Single-photon quantum error rejection and correction with linear optics, Phys. Lett. A 343(5), 331 (2005)
CrossRef ADS Google scholar
[78]
M. Jiang and D. Dong, A recursive two-phase general protocol on deterministic remote preparation of a class of multi-qubit states, J. Phys. B 45(20), 205506 (2012)
CrossRef ADS Google scholar
[79]
F. G. Deng, B. C. Ren, and X. H. Li, Quantum hyperentanglement and its applications in quantum information processing, Sci. Bull. (Beijing) 62(1), 46 (2017)
CrossRef ADS Google scholar
[80]
X. J. Zhang, D. S. Wu, J. Zhang, H. W. Yu, J. G. Zheng, D. X. Cao, and M. Z. Li, One-pulse driven plasma Pockels cell with DKDP crystal for repetition-rate application, Opt. Express 17(19), 17164 (2009)
CrossRef ADS Google scholar
[81]
E. H. Huntington and T. C. Ralph, Separating the quantum sidebands of an optical field, J. Opt. B 4(2), 123 (2002)
CrossRef ADS Google scholar
[82]
J. Zhang, Einstein–Podolsky–Rosen sideband entanglement in broadband squeezed light, Phys. Rev. A 67(5), 054302 (2003)
CrossRef ADS Google scholar
[83]
E. H. Huntington and T. C. Ralph, Components for optical qubits encoded in sideband modes, Phys. Rev. A 69(4), 042318 (2004)
CrossRef ADS Google scholar
[84]
E. H. Huntington, G. N. Milford, C. Robilliard, and T. C. Ralph, Coherent analysis of quantum optical sideband modes, Opt. Lett. 30(18), 2481 (2005)
CrossRef ADS Google scholar
[85]
M. Bloch, S. W. McLaughlin, J. M. Merolla, and F. Patois, Frequency-coded quantum key distribution, Opt. Lett. 32(3), 301 (2007)
CrossRef ADS Google scholar
[86]
T. Zhang, Z. Q. Yin, Z. F. Han, and G. C. Guo, A frequency-coded quantum key distribution scheme, Opt. Commun. 281(18), 4800 (2008)
CrossRef ADS Google scholar
[87]
H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, Differential phase shift quantum key distribution experiment over 105 km fibre, New J. Phys. 7, 232 (2005)
CrossRef ADS Google scholar
[88]
H. Takesue, Erasing distinguishability using quantum frequency up-conversion, Phys. Rev. Lett. 101(17), 173901 (2008)
CrossRef ADS Google scholar
[89]
R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, Wide-band quantum interface for visible-to-telecommunication wavelength conversion, Nat. Commun. 2(1), 537 (2011)
CrossRef ADS Google scholar
[90]
Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, Orbital angular momentum-entanglement frequency transducer, Phys. Rev. Lett. 117(10), 103601 (2016)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(879 KB)

Accesses

Citations

Detail

Sections
Recommended

/