Remote preparation for single-photon state in two degrees of freedom with hyper-entangled states
Mei-Yu Wang, Fengli Yan, Ting Gao
Remote preparation for single-photon state in two degrees of freedom with hyper-entangled states
Remote state preparation (RSP) provides a useful way of transferring quantum information between two distant nodes based on the previously shared entanglement. In this paper, we study RSP of an arbitrary single-photon state in two degrees of freedom (DoFs). Using hyper-entanglement as a shared resource, our first goal is to remotely prepare the single-photon state in polarization and frequency DoFs and the second one is to reconstruct the single-photon state in polarization and time-bin DoFs. In the RSP process, the sender will rotate the quantum state in each DoF of the photon according to the knowledge of the state to be communicated. By performing a projective measurement on the polarization of the sender’s photon, the original single-photon state in two DoFs can be remotely reconstructed at the receiver’s quantum systems. This work demonstrates a novel capability for longdistance quantum communication.
remote state preparation / hyper-entanglement
[1] |
C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
CrossRef
ADS
Google scholar
|
[2] |
C. H. Bennett and S. J. Wiesner, Communication via oneand two-particle operators on Einstein–Podolsky–Rosen states, Phys. Rev. Lett. 69(20), 2881 (1992)
CrossRef
ADS
Google scholar
|
[3] |
A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67(6), 661 (1991)
CrossRef
ADS
Google scholar
|
[4] |
M. Hillery, V. Bužek, and A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59(3), 1829 (1999)
CrossRef
ADS
Google scholar
|
[5] |
G. L. Long and X. S. Liu, Theoretically efficient highcapacity quantum-key-distribution scheme, Phys. Rev. A 65(3), 032302 (2002)
CrossRef
ADS
Google scholar
|
[6] |
F. G. Deng, G. L. Long, and X. S. Liu, Two-step quantum direct communication protocol using the Einstein– Podolsky–Rosen pair block, Phys. Rev. A 68(4), 042317 (2003)
CrossRef
ADS
Google scholar
|
[7] |
H. K. Lo, Classical-communication cost in distributed quantum-information processing: A generalization of quantumcommunication complexity, Phys. Rev. A 62(1), 012313 (2000)
CrossRef
ADS
Google scholar
|
[8] |
A. K. Pati, Minimum classical bit for remote preparation and measurement of a qubit, Phys. Rev. A 63(1), 014302 (2000)
CrossRef
ADS
Google scholar
|
[9] |
C. H. Bennett, D. P. DiVincenzo, P. W. Shor, J. A. Smolin, B. M. Terhal, and W. K. Wootters, Remote state preparation, Phys. Rev. Lett. 87(7), 077902 (2001)
CrossRef
ADS
Google scholar
|
[10] |
L. Qi, G. L. Wang, S. T. Liu, S. Zhang, and H. F. Wang, Dissipation-induced topological phase transition and periodicdriving-induced photonic topological state transfer in a small optomechanical lattice, Front. Phys. 16(1), 12503 (2021)
CrossRef
ADS
Google scholar
|
[11] |
I. Devetak and T. Berger, Low-entanglement remote state preparation, Phys. Rev. Lett. 87(19), 197901 (2001)
CrossRef
ADS
Google scholar
|
[12] |
B. Zeng and P. Zhang, Remote-state preparation in higher dimension and the parallelizable manifold Sn 1, Phys. Rev. A 65(2), 022316 (2002)
CrossRef
ADS
Google scholar
|
[13] |
D. W. Berry and B. C. Sanders, Optimal remote state preparation, Phys. Rev. Lett. 90(5), 057901 (2003)
CrossRef
ADS
Google scholar
|
[14] |
D. W. Leung and P. W. Shor, Oblivious remote state preparation, Phys. Rev. Lett. 90(12), 127905 (2003)
CrossRef
ADS
Google scholar
|
[15] |
Y. X. Huang and M. S. Zhan, Remote preparation of multipartite pure state, Phys. Lett. A 327(5–6), 404 (2004)
CrossRef
ADS
Google scholar
|
[16] |
Z. Kurucz, P. Adam, Z. Kis, and J. Janszky, Continuous variable remote state preparation, Phys. Rev. A 72(5), 052315 (2005)
CrossRef
ADS
Google scholar
|
[17] |
Z. Kurucz, P. Adam, and J. Janszky, General criterion for oblivious remote state preparation, Phys. Rev. A 73(6), 062301 (2006)
CrossRef
ADS
Google scholar
|
[18] |
B. A. Nguyen and J. Kim, Joint remote state preparation, J. Phys. B 41(9), 095501 (2008)
CrossRef
ADS
Google scholar
|
[19] |
N. B. An, C. T. Bich, and N. V. Don, Deterministic joint remote state preparation, Phys. Lett. A 375(41), 3570 (2011)
CrossRef
ADS
Google scholar
|
[20] |
D. Zhang, X. W. Zha, Y. J. Duan, and Y. Q. Yang, Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state, Quantum Inform. Process. 15(5), 2169 (2016)
CrossRef
ADS
Google scholar
|
[21] |
X. B. Chen, Y. R. Sun, G. Xu, H. Y. Jia, Z. Qu, and Y.X. Yang, Controlled bidirectional remote preparation of three-qubit state, Quantum Inform. Process. 16(10), 244 (2017)
CrossRef
ADS
Google scholar
|
[22] |
C. Y. Zhang, M. Q. Bai, and S. Q. Zhou, Cyclic joint remote state preparation in noisy environment, Quantum Inform. Process. 17(6), 146 (2018)
CrossRef
ADS
Google scholar
|
[23] |
Y. J. Qian, S. B. Xue, and M. Jiang, Deterministic remote preparation of arbitrary single-qubit state via one intermediate node in noisy environment, Phys. Lett. A 384(10), 126204 (2020)
CrossRef
ADS
Google scholar
|
[24] |
T. Dash, R. Sk, and P. K. Panigrahi, Deterministic joint remote state preparation of arbitrary two-qubit state through noisy cluster-GHZ channel, Opt. Commun. 464, 125518 (2020)
CrossRef
ADS
Google scholar
|
[25] |
J. Laurat, T. Coudreau, N. Treps, A. Ma ıtre, and C. Fabre, Conditional preparation of a quantum state in the continuous variable regime: Generation of a subpoissonian state from twin beams, Phys. Rev. Lett. 91(21), 213601 (2003)
CrossRef
ADS
Google scholar
|
[26] |
S. A. Babichev, B. Brezger, and A. I. Lvovsky, Remote preparation of a single-mode photonic qubit by measuring field quadrature noise, Phys. Rev. Lett. 92(4), 047903 (2004)
CrossRef
ADS
Google scholar
|
[27] |
G. Y. Xiang, J. Li, B. Yu, and G. C. Guo, Remote preparation of mixed states via noisy entanglement, Phys. Rev. A 72(1), 012315 (2005)
CrossRef
ADS
Google scholar
|
[28] |
N. A. Peters, J. T. Barreiro, M. E. Goggin, T. C. Wei, and P. G. Kwiat, Remote state preparation: Arbitrary remote control of photon polarization, Phys. Rev. Lett. 94(15), 150502 (2005)
CrossRef
ADS
Google scholar
|
[29] |
W. T. Liu, W. Wu, B. Q. Ou, P. X. Chen, C. Z. Li, and J. M. Yuan, Experimental remote preparation of arbitrary photon polarization states, Phys. Rev. A 76(2), 022308 (2007)
CrossRef
ADS
Google scholar
|
[30] |
H. Mikami and T. Kobayashi, Remote preparation of qutrit states with biphotons, Phys. Rev. A 75(2), 022325 (2007)
CrossRef
ADS
Google scholar
|
[31] |
W. Wu, W. T. Liu, P. X. Chen, and C. Z. Li, Deterministic remote preparation of pure and mixed polarization states, Phys. Rev. A 81(4), 042301 (2010)
CrossRef
ADS
Google scholar
|
[32] |
N. Killoran, D. N. Biggerstaff, R. Kaltenbaek, K. J. Resch, and N. Lütkenhaus, Derivation and experimental test of fidelity benchmarks for remote preparation of arbitrary qubit states, Phys. Rev. A 81(1), 012334 (2010)
CrossRef
ADS
Google scholar
|
[33] |
M. A. Solís-Prosser and L. Neves, Remote state preparation of spatial qubits, Phys. Rev. A 84(1), 012330 (2011)
CrossRef
ADS
Google scholar
|
[34] |
M. Rådmark, M. Wiesniak, M. Zukowski, and M. Bourennane, Experimental multilocation remote state preparation, Phys. Rev. A 88(3), 032304 (2013)
CrossRef
ADS
Google scholar
|
[35] |
Y. S. Ra, H. T. Lim, and Y. H. Kim, Remote preparation of three-photon entangled states via single-photon measurement, Phys. Rev. A 94(4), 042329 (2016)
CrossRef
ADS
Google scholar
|
[36] |
M. C. Dheur, B. Vest, E. Devaux, A. Baron, J. P. Hugonin, J. J. Greffet, G. Messin, and F. Marquier, Remote preparation of single-plasmon states, Phys. Rev. B 96(4), 045432 (2017)
CrossRef
ADS
Google scholar
|
[37] |
H. Le Jeannic, A. Cavaillès, J. Raskop, K. Huang, and J. Laurat, Remote preparation of continuous-variable qubits using loss-tolerant hybrid entanglement of light, Optica 5(8), 1012 (2018)
CrossRef
ADS
Google scholar
|
[38] |
P. G. Kwiat and H. Weinfurter, Embedded Bell-state analysis, Phys. Rev. A 58(4), R2623 (1998)
CrossRef
ADS
Google scholar
|
[39] |
S. P. Walborn, S. Pádua, and C. H. Monken, Hyperentanglement-assisted Bell-state analysis, Phys. Rev. A 68(4), 042313 (2003)
CrossRef
ADS
Google scholar
|
[40] |
C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, Complete deterministic linear optics Bell state analysis, Phys. Rev. Lett. 96(19), 190501 (2006)
CrossRef
ADS
Google scholar
|
[41] |
M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement, Phys. Rev. A 75(4), 042317 (2007)
CrossRef
ADS
Google scholar
|
[42] |
Y. B. Sheng, F. G. Deng, and G. L. Long, Complete hyperentangled-Bell-state analysis for quantum communication, Phys. Rev. A 82(3), 032318 (2010)
CrossRef
ADS
Google scholar
|
[43] |
X. H. Li and S. Ghose, Self-assisted complete maximally hyperentangled state analysis via the cross-Kerr nonlinearity, Phys. Rev. A 93(2), 022302 (2016)
CrossRef
ADS
Google scholar
|
[44] |
G. Y. Wang, B. C. Ren, F. G. Deng, and G. L. Long, Complete analysis of hyperentangled Bell states assisted with auxiliary hyperentanglement, Opt. Express 27(6), 8994 (2019)
CrossRef
ADS
Google scholar
|
[45] |
T. J. Wang, S. Y. Song, and G. L. Long, Quantum repeater based on spatial entanglement of photons and quantumdot spins in optical microcavities, Phys. Rev. A 85(6), 062311 (2012)
CrossRef
ADS
Google scholar
|
[46] |
B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities, Opt. Express 20(22), 24664 (2012)
CrossRef
ADS
Google scholar
|
[47] |
X. H. Li and S. Ghose, Complete hyperentangled Bell state analysis for polarization and time-bin hyperentanglement, Opt. Express 24(16), 18388 (2016)
CrossRef
ADS
Google scholar
|
[48] |
H. Wang, B. C. Ren, A. H. Wang, A. Alsaedi, T. Hayat, and F. G. Deng, General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics, Front. Phys. 13(5), 130315 (2018)
CrossRef
ADS
Google scholar
|
[49] |
J. Liu, L. Zhou, W. Zhong, and Y. B. Sheng, Logic Bell state concentration with parity check measurement, Front. Phys. 14(2), 21601 (2019)
CrossRef
ADS
Google scholar
|
[50] |
C. Simon and J. W. Pan, Polarization entanglement purification using spatial entanglement, Phys. Rev. Lett. 89(25), 257901 (2002)
CrossRef
ADS
Google scholar
|
[51] |
A. Yabushita and T. Kobayashi, Spectroscopy by frequency-entangled photon pairs, Phys. Rev. A 69(1), 013806 (2004)
CrossRef
ADS
Google scholar
|
[52] |
J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, Generation of hyperentangled photon pairs, Phys. Rev. Lett. 95(26), 260501 (2005)
CrossRef
ADS
Google scholar
|
[53] |
M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, Polarization-momentum hyperentangled states: Realization and characterization, Phys. Rev. A 72(5), 052110 (2005)
CrossRef
ADS
Google scholar
|
[54] |
A. Rossi, G. Vallone, A. Chiuri, F. De Martini, and P. Mataloni, Mulipath entanglement of two photons, Phys. Rev. Lett. 102(15), 153902 (2009)
CrossRef
ADS
Google scholar
|
[55] |
G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, Hyperentanglement of two photons in three degrees of freedom, Phys. Rev. A 79(3), 030301 (2009)
CrossRef
ADS
Google scholar
|
[56] |
W. B. Gao, C. Y. Lu, X. C. Yao, P. Xu, O. Guhne, A. Goebel, Y. A. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, Experimental demonstration of a hyperentangled tenqubit Schrödinger cat state, Nat. Phys. 6(5), 331 (2010)
CrossRef
ADS
Google scholar
|
[57] |
D. Bhatti, J. von Zanthier, and G. S. Agarwal, Entanglement of polarization and orbital angular momentum, Phys. Rev. A 91(6), 062303 (2015)
CrossRef
ADS
Google scholar
|
[58] |
M. Prilmüller, T. Huber, M. Müller, P. Michler, G. Weihs, and A. Predojević, Hyperentanglement of photons emitted by a quantum dot, Phys. Rev. Lett. 121(11), 110503 (2018)
CrossRef
ADS
Google scholar
|
[59] |
X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Quantum teleportation of multiple degrees of freedom of a single photon, Nature 518(7540), 516 (2015)
CrossRef
ADS
Google scholar
|
[60] |
J. T. Barreiro, T. C. Wei, and P. G. Kwiat, Beating the channel capacity limit for linear photonic superdense coding, Nat. Phys. 4(4), 282 (2008)
CrossRef
ADS
Google scholar
|
[61] |
J. T. Barreiro, T. C. Wei, and P. G. Kwiat, Remote preparation of single-photon hybrid entangled and vectorpolarization states, Phys. Rev. Lett. 105(3), 030407 (2010)
CrossRef
ADS
Google scholar
|
[62] |
P. Zhou, X. F. Jiao, and S. X. Lv, Parallel remote state preparation of arbitrary single-qubit states via linear optical elements by using hyperentangled Bell states as the quantum channel, Quantum Inform. Process. 17(11), 298 (2018)
CrossRef
ADS
Google scholar
|
[63] |
X. F. Jiao, P. Zhou, S. X. Lv, and Z. Y. Wang, Remote preparation for single-photon two-qubit hybrid state with hyperentanglement via linear optical elements, Sci. Rep. 9(1), 4663 (2019)
CrossRef
ADS
Google scholar
|
[64] |
A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength, New J. Phys. 12(10), 103005 (2010)
CrossRef
ADS
Google scholar
|
[65] |
C. Chen, E. Y. Zhu, A. Riazi, A. V. Gladyshev, C. Corbari, M. Ibsen, P. G. Kazansky, and L. Qian, Compensation-free broadband entangled photon pair sources, Opt. Express 25(19), 22667 (2017)
CrossRef
ADS
Google scholar
|
[66] |
M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, Experimental realization of any discrete unitary operator, Phys. Rev. Lett. 73(1), 58 (1994)
CrossRef
ADS
Google scholar
|
[67] |
R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, Experimental investigation of the robustness of partially entangled qubits over 11 km, Phys. Rev. A 66(6), 062304 (2002)
CrossRef
ADS
Google scholar
|
[68] |
I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, Distribution of time-bin entangled qubits over 50 km of optical fiber, Phys. Rev. Lett. 93(18), 180502 (2004)
CrossRef
ADS
Google scholar
|
[69] |
T. Inagaki, N. Matsuda, O. Tadanaga, M. Asobe, and H. Takesue, Entanglement distribution over 300 km of fiber, Opt. Express 21(20), 23241 (2013)
CrossRef
ADS
Google scholar
|
[70] |
R. Valivarthi, M. G. Puigibert, Q. Zhou, G. H. Aguilar, V. B. Verma, F. Marsili, M. D. Shaw, S. W. Nam, D. Oblak, and W. Tittel, Quantum teleportation across a metropolitan fibre network, Nat. Photon. 10(10), 676 (2016)
CrossRef
ADS
Google scholar
|
[71] |
Q. C. Sun, Y. L. Mao, S. J. Chen, W. Zhang, Y. F. Jiang, Y. B. Zhang, W. J. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T. Y. Chen, L. X. You, X. F. Chen, Z. Wang, J. Y. Fan, Q. Zhang, and J. W. Pan, Quantum teleportation with independent sources and prior entanglement distribution over a network, Nat. Photon. 10(10), 671 (2016)
CrossRef
ADS
Google scholar
|
[72] |
J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, Pulsed energy-time entangled twin-photon source for quantum communication, Phys. Rev. Lett. 82(12), 2594 (1999)
CrossRef
ADS
Google scholar
|
[73] |
C. Simon and J. P. Poizat, Creating single time-binentangled photon pairs, Phys. Rev. Lett. 94(3), 030502 (2005)
CrossRef
ADS
Google scholar
|
[74] |
A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, J. Majer, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Approaching unit visibility for control of a superconducting qubit with dispersive readout, Phys. Rev. Lett. 95(6), 060501 (2005)
CrossRef
ADS
Google scholar
|
[75] |
A. Zavatta, M. D′ Angelo, V. Parigi, and M. Bellini, Remote preparation of arbitrary time-encoded single-photon ebits, Phys. Rev. Lett. 96(2), 020502 (2006)
CrossRef
ADS
Google scholar
|
[76] |
J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, Generation of hyperentangled photon pairs, Phys. Rev. Lett. 95(26), 260501 (2005)
CrossRef
ADS
Google scholar
|
[77] |
D. Kalamidas, Single-photon quantum error rejection and correction with linear optics, Phys. Lett. A 343(5), 331 (2005)
CrossRef
ADS
Google scholar
|
[78] |
M. Jiang and D. Dong, A recursive two-phase general protocol on deterministic remote preparation of a class of multi-qubit states, J. Phys. B 45(20), 205506 (2012)
CrossRef
ADS
Google scholar
|
[79] |
F. G. Deng, B. C. Ren, and X. H. Li, Quantum hyperentanglement and its applications in quantum information processing, Sci. Bull. (Beijing) 62(1), 46 (2017)
CrossRef
ADS
Google scholar
|
[80] |
X. J. Zhang, D. S. Wu, J. Zhang, H. W. Yu, J. G. Zheng, D. X. Cao, and M. Z. Li, One-pulse driven plasma Pockels cell with DKDP crystal for repetition-rate application, Opt. Express 17(19), 17164 (2009)
CrossRef
ADS
Google scholar
|
[81] |
E. H. Huntington and T. C. Ralph, Separating the quantum sidebands of an optical field, J. Opt. B 4(2), 123 (2002)
CrossRef
ADS
Google scholar
|
[82] |
J. Zhang, Einstein–Podolsky–Rosen sideband entanglement in broadband squeezed light, Phys. Rev. A 67(5), 054302 (2003)
CrossRef
ADS
Google scholar
|
[83] |
E. H. Huntington and T. C. Ralph, Components for optical qubits encoded in sideband modes, Phys. Rev. A 69(4), 042318 (2004)
CrossRef
ADS
Google scholar
|
[84] |
E. H. Huntington, G. N. Milford, C. Robilliard, and T. C. Ralph, Coherent analysis of quantum optical sideband modes, Opt. Lett. 30(18), 2481 (2005)
CrossRef
ADS
Google scholar
|
[85] |
M. Bloch, S. W. McLaughlin, J. M. Merolla, and F. Patois, Frequency-coded quantum key distribution, Opt. Lett. 32(3), 301 (2007)
CrossRef
ADS
Google scholar
|
[86] |
T. Zhang, Z. Q. Yin, Z. F. Han, and G. C. Guo, A frequency-coded quantum key distribution scheme, Opt. Commun. 281(18), 4800 (2008)
CrossRef
ADS
Google scholar
|
[87] |
H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, Differential phase shift quantum key distribution experiment over 105 km fibre, New J. Phys. 7, 232 (2005)
CrossRef
ADS
Google scholar
|
[88] |
H. Takesue, Erasing distinguishability using quantum frequency up-conversion, Phys. Rev. Lett. 101(17), 173901 (2008)
CrossRef
ADS
Google scholar
|
[89] |
R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, Wide-band quantum interface for visible-to-telecommunication wavelength conversion, Nat. Commun. 2(1), 537 (2011)
CrossRef
ADS
Google scholar
|
[90] |
Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, Orbital angular momentum-entanglement frequency transducer, Phys. Rev. Lett. 117(10), 103601 (2016)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |