Discrete ellipsoidal statistical BGK model and Burnett equations

Yu-Dong Zhang, Ai-Guo Xu, Guang-Cai Zhang, Zhi-Hua Chen, Pei Wang

Front. Phys. ›› 2018, Vol. 13 ›› Issue (3) : 135101.

PDF(14176 KB)
PDF(14176 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (3) : 135101. DOI: 10.1007/s11467-018-0749-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Discrete ellipsoidal statistical BGK model and Burnett equations

Author information +
History +

Abstract

A new discrete Boltzmann model, the discrete ellipsoidal statistical Bhatnagar–Gross–Krook (ESBGK) model, is proposed to simulate nonequilibrium compressible flows. Compared with the original discrete BGK model, the discrete ES-BGK has a flexible Prandtl number. For the discrete ES-BGK model in the Burnett level, two kinds of discrete velocity model are introduced and the relations between nonequilibrium quantities and the viscous stress and heat flux in the Burnett level are established. The model is verified via four benchmark tests. In addition, a new idea is introduced to recover the actual distribution function through the macroscopic quantities and their space derivatives. The recovery scheme works not only for discrete Boltzmann simulation but also for hydrodynamic ones, for example, those based on the Navier–Stokes or the Burnett equations.

Keywords

discrete Boltzmann model / ellipsoidal statistical BGK / Burnett equations / nonequilibrium quantities / actual distribution function

Cite this article

Download citation ▾
Yu-Dong Zhang, Ai-Guo Xu, Guang-Cai Zhang, Zhi-Hua Chen, Pei Wang. Discrete ellipsoidal statistical BGK model and Burnett equations. Front. Phys., 2018, 13(3): 135101 https://doi.org/10.1007/s11467-018-0749-3

References

[1]
H. Tsien, Superaerodynamics, Mechanics of Rarefied Gases, Collected Works of H. S. Tsien, 13(12), 406 (2012)
CrossRef ADS Google scholar
[2]
S. Ching, Rarefied Gas Dynamics, Berlin Heidelberg: Springer, 2005
[3]
W. Chen, W. Zhao, Z. Jiang, et al., A review of moment equations for rarefied gas dynamics, Physics of Gases 1(5), 9 (2016)
[4]
C. Ho and Y. Tai, Micro-electro-mechanical-systems (MEMS) and fluid flows, Annu. Rev. Fluid Mech. 30(1), 579 (1998)
CrossRef ADS Google scholar
[5]
G. Karniadakis and A. Beşkök, Microflows: Fundamentals and Simulation, Springer, 2005
[6]
Y. Zheng and H. Struchtrup, Burnett equations for the ellipsoidal statistical BGK model, Contin. Mech. Thermodyn. 16(1–2), 97 (2004)
CrossRef ADS Google scholar
[7]
L. Wu, C. White, T. J. Scanlon, J. M. Reese, and Y. Zhang, Deterministic numerical solutions of the Boltzmann equation using the fast spectral method, J. Comput. Phys. 250(250), 27 (2013)
CrossRef ADS Google scholar
[8]
G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford: Clarendon Press, 2003
[9]
K. Xu and J. C. Huang, A unified gas-kinetic scheme for continuum and rarefied flows, J. Comput. Phys. 229(20), 7747 (2010)
CrossRef ADS Google scholar
[10]
C. Liu, K. Xu, Q. Sun, et al., A unified gas-kinetic scheme for continuum and rarefied flows (IV), Commun. Comput. Phys. 14(5), 1147 (2014)
[11]
L. Yang, C. Shu, J. Wu, and Y. Wang, Numerical simulation of flows from free molecular regime to continuum regime by a DVM with streaming and collision processes, J. Comput. Phys. 306, 291 (2016)
CrossRef ADS Google scholar
[12]
Z. Guo, K. Xu, and R. Wang, Discrete unified gas kinetic scheme for all Knudsen number flows: Low-speed isothermal case, Phys. Rev. E 88(3), 033305 (2013)
CrossRef ADS Google scholar
[13]
Z. Guo, R. Wang, and K. Xu, Discrete unified gas kinetic scheme for all Knudsen number flows (II): Thermal compressible case,Phys. Rev. E 91(3), 033313 (2015)
CrossRef ADS Google scholar
[14]
Y. Zhang, R. Qin, and D. Emerson, Lattice Boltzmann simulation of rarefied gas flows in microchannels, Phys. Rev. E 71(4), 047702 (2005)
CrossRef ADS Google scholar
[15]
Y. Zhang, R. Qin, Y. Sun, R. W. Barber, and D. R. Emerson, Gas flow in microchannels–a lattice Boltzmann method approach, J. Stat. Phys. 121(1–2), 257 (2005)
CrossRef ADS Google scholar
[16]
X. Shan, X. F. Yuan, and H. Chen, Kinetic theory representation of hydrodynamics: a way beyond the Navier– Stokes equation,J. Fluid Mech. 550(-1), 413 (2006)
[17]
J. Meng, Y. Zhang, N. G. Hadjiconstantinou, G. A. Radtke, and X. Shan, Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows, J. Fluid Mech. 718, 347 (2013)
CrossRef ADS Google scholar
[18]
M. Watari, Is the lattice Boltzmann method applicable to rarefied gas flows? Comprehensive evaluation of the higher-order models, J. Fluids Eng. 138(1), 011202 (2015)
CrossRef ADS Google scholar
[19]
A. Xu, G. Zhang, and Y. Ying, Progress of discrete Boltzmann modeling and simulation of combustion system, Acta Physica Sinica 64(18), 184701 (2015)
[20]
A. Xu, G. Zhang, and Y. Gan, Progress in studies on discrete Boltzmann modeling of phase separation process, Mech. Eng. 38(4), 361 (2016)
[21]
A. Xu, G. Zhang, Y. Ying, et al., Complex fields in heterogeneous materials under shock: Modeling, simulation and analysis, Sci. China: Phys. Mech. & Astron. 59(5), 650501 (2016)
CrossRef ADS Google scholar
[22]
Y. Gan, A. Xu, G. Zhang, and S. Succi, Discrete Boltzmann modeling of multiphase flows: hydrodynamic and thermodynamic non-equilibrium effects, Soft Matter 11(26), 5336 (2015)
CrossRef ADS Google scholar
[23]
H. Lai, A. Xu, G. Zhang, Y. Gan, Y. Ying, and S. Succi, Nonequilibrium thermohydrodynamic effects on the Rayleigh-Taylor instability in compressible flows, Phys. Rev. E 94(2), 023106 (2016)
CrossRef ADS Google scholar
[24]
F. Chen, A. Xu, and G. Zhang, Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh– Taylor Instability, Front. Phys. 11(6), 114703 (2016)
CrossRef ADS Google scholar
[25]
C. Lin, A. Xu, G. Zhang, and Y. Li, Doubledistribution- function discrete Boltzmann model for combustion, Combust. Flame 164, 137 (2016)
CrossRef ADS Google scholar
[26]
Y. Zhang, A. Xu, G. Zhang, C. Zhu, and C. Lin, Kinetic modeling of detonation and effects of negative temperature coefficient, Combust. Flame 173, 483 (2016)
CrossRef ADS Google scholar
[27]
C. Lin, A. Xu, G. Zhang, Y. Li, and S. Succi, Polarcoordinate lattice Boltzmann modeling of compressible flows, Phys. Rev. E 89(1), 013307 (2014)
CrossRef ADS Google scholar
[28]
H. Liu, W. Kang, Q. Zhang, Y. Zhang, H. Duan, and X. T. He, Molecular dynamics simulations of microscopic structure of ultrastrong shock waves in dense helium, Front. Phys. 11(6), 115206 (2016)
CrossRef ADS Google scholar
[29]
H. Liu, Y. Zhang, W. Kang, P. Zhang, H. Duan, and X. T. He, Molecular dynamics simulation of strong shock waves propagating in dense deuterium, taking into consideration effects of excited electrons, Phys. Rev. E 95(2), 023201 (2017)
CrossRef ADS Google scholar
[30]
H. Liu, W. Kang, H. Duan, P. Zhang, and X. T. He, Recent progresses on numerical investigations of microscopic structure of strong shock waves in fluid, Sci. China: Phys. Mech. & Astron. 47(7), 070003 (2017)
CrossRef ADS Google scholar
[31]
W. Kang, U. Landman, and A. Glezer, Thermal bending of nanojets: Molecular dynamics simulations of an asymmetrically heated nozzle, Appl. Phys. Lett. 93(12), 123116 (2008)
CrossRef ADS Google scholar
[32]
P. L. Bhatnagar, E. P. Gross, and M. Krook, A model for collision processes in gases (I): Small amplitude processes in charged and neutral one-component systems, Phys. Rev. 94(3), 511 (1954)
CrossRef ADS Google scholar
[33]
Holway, New statistical models for kinetic theory: Methods of construction, Phys. Fluids 9(9), 1658 (1966)
CrossRef ADS Google scholar
[34]
E. M. Shakhov, Generalization of the Krook kinetic relaxation equation, Fluid Dyn. 3(5), 95 (1972)
CrossRef ADS Google scholar
[35]
V. A. Rykov, A model kinetic equation for a gas with rotational degrees of freedom, Fluid Dyn. 10(6), 959 (1976)
CrossRef ADS Google scholar
[36]
P. Andries, P. Le Tallec, J. P. Perlat, and B. Perthame, The Gaussian-BGK model of Boltzmann equation with small Prandtl number, Eur. J. Mech. BFluids 19(6), 813 (2000)
CrossRef ADS Google scholar
[37]
Y. Zheng and H. Struchtrup, Burnett equations for the ellipsoidal statistical BGK model, Contin. Mech. Thermodyn. 16(1–2), 97 (2004)
CrossRef ADS Google scholar
[38]
Y. Gan, A. Xu, G. Zhang, and Y. Yang, Lattice BGK kinetic model for high-speed compressible flows: Hydrodynamic and nonequilibrium behaviors, EPL 103(2), 24003 (2013)
CrossRef ADS Google scholar
[39]
H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows, Berlin Heidelberg: Springer, 2005
CrossRef ADS Google scholar
[40]
M. Watari and M. Tsutahara, Two-dimensional thermal model of the finite-difference lattice Boltzmann method with high spatial isotropy, Phys. Rev. E 67(3), 036306 (2003)
CrossRef ADS Google scholar
[41]
K. Xu, A gas-kinetic BGK Scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method, J. Comput. Phys. 171(1), 289 (2001)
CrossRef ADS Google scholar
[42]
Z. Guo, C. Zheng, and B. Shi, An extrapolation method for boundary conditions in lattice Boltzmann method, Phys. Fluids 14(6), 2007 (2002)
CrossRef ADS Google scholar
[43]
P. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys. 54(1), 115 (1984)
CrossRef ADS Google scholar
[44]
G. Pham-Van-Diep, D. Erwin, and E. P. Muntz, Nonequilibrium molecular motion in a hypersonic shock wave, Science 245(4918), 624 (1989)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(14176 KB)

Accesses

Citations

Detail

Sections
Recommended

/