Fractal dimension study of polaron effects in cylindrical GaAs/AlxGa1−xAs core–shell nanowires

Hui Sun, Hua Li, Qiang Tian

Front. Phys. ›› 2018, Vol. 13 ›› Issue (2) : 137301.

PDF(674 KB)
PDF(674 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (2) : 137301. DOI: 10.1007/s11467-017-0730-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Fractal dimension study of polaron effects in cylindrical GaAs/AlxGa1−xAs core–shell nanowires

Author information +
History +

Abstract

Polaron effects in cylindrical GaAs/AlxGa1−xAs core–shell nanowires are studied by applying the fractal dimension method. In this paper, the polaron properties of GaAs/AlxGa1-xAs core–shell nanowires with different core radii and aluminum concentrations are discussed. The polaron binding energy, polaron mass shift, and fractal dimension parameter are numerically determined as functions of shell width. The calculation results reveal that the binding energy and mass shift of the polaron first increase and then decrease as the shell width increases. A maximum value appears at a certain shell width for different aluminum concentrations and a given core radius. By using the fractal dimension method, polaron problems in cylindrical GaAs/AlxGa1-xAs core–shell nanowires are solved in a simple manner that avoids complex and lengthy calculations.

Keywords

core–shell nanowire / polaron effects / fractal dimension method

Cite this article

Download citation ▾
Hui Sun, Hua Li, Qiang Tian. Fractal dimension study of polaron effects in cylindrical GaAs/AlxGa1−xAs core–shell nanowires. Front. Phys., 2018, 13(2): 137301 https://doi.org/10.1007/s11467-017-0730-6

References

[1]
B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl, J. Treu, K. Müller, G. Bracher, G. Abstreiter, G. Koblmüller, and J. J. Finley, Lasing from individual GaAs-AlGaAs core–shell nanowires up to room temperature, Nat. Commun. 4, 2931 (2013)
CrossRef ADS Google scholar
[2]
A. Lubk, D. Wolf, P. Prete, N. Lovergine, T. Niermann, S. Sturm, and H. Lichte, Nanometer-scale tomographic reconstruction of three-dimensional electrostatic potentials in GaAs/AlGaAs core–shell nanowires, Phys. Rev. B 90(12), 125404 (2014)
CrossRef ADS Google scholar
[3]
S. Morkötter, N. Jeon, D. Rudolph, B. Loitsch, D. Spirkoska, E. Hoffmann, M. Döblinger, S. Matich, J. J. Finley, L. J. Lauhon, G. Abstreiter, and G. Koblmüller, Demonstration of confined electron gas and steep-slope behavior in delta-doped GaAs-AlGaAs core–shell nanowire transistors, Nano Lett. 15(5), 3295 (2015)
CrossRef ADS Google scholar
[4]
N. Jiang, P. Parkinson, Q. Gao, S. Breuer, H. H. Tan, J. Wong-Leung, and C. Jagadish, Long minority carrier lifetime in Au-catalyzed GaAs/AlxGa1−xAs core-shell nanowires, Appl. Phys. Lett. 101(2), 023111 (2012)
CrossRef ADS Google scholar
[5]
D. Rudolph, S. Funk, M. Döblinger, S. Morkötter, S. Hertenberger, L. Schweickert, J. Becker, S. Matich, M. Bichler, D. Spirkoska, I. Zardo, J. J. Finley, G. Abstreiter, and G. Koblmüller, Spontaneous alloy composition ordering in GaAs-AlGaAs core–shell nanowires, Nano Lett. 13(4), 1522 (2013)
CrossRef ADS Google scholar
[6]
X. F. He, Excitons in anisotropic solids: The model of fractional-dimensional space, Phys. Rev. B 43(3), 2063 (1991)
CrossRef ADS Google scholar
[7]
A. Matos-Abiague, A fractional-dimensional space approach to the polaron effect in quantum wells, J. Phys. Condens. Matter 14(17), 4543 (2002)
CrossRef ADS Google scholar
[8]
A. Matos-Abiague, Fractional-dimensional space approach for parabolic-confined polarons, Semicond. Sci. Technol. 17(2), 150 (2002)
CrossRef ADS Google scholar
[9]
A. Matos-Abiague, Polaron effect in GaAs-Ga1−xAlxAs quantum wells: A fractional-dimensional space approach, Phys. Rev. B 65(16), 165321 (2002)
CrossRef ADS Google scholar
[10]
Z. H. Wu, H. Li, L. X. Yan, B. C. Liu, and Q. Tian, Fractional-dimensional space approach for the polaron in a GaAs film deposited on AlxGa1−xAs substrate, Physica B 410, 28 (2013)
CrossRef ADS Google scholar
[11]
Z. H. Wu, H. Li, L. X. Yan, B. C. Liu, and Q. Tian, The polaron in a GaAs film deposited on AlxGa1−xAs influenced by the thickness of the Substrate, Superlattices Microstruct. 55, 16 (2013)
CrossRef ADS Google scholar
[12]
H. Li, B. C. Liu, B. X. Shi, S. Y. Dong, and Q. Tian, Novel method to determine effective length of quantum confinement using fractional-dimension space approach, Front. Phys. 10(4), 107302 (2015)
CrossRef ADS Google scholar
[13]
Z. H. Wu, L. Chen, and Q. Tian, Exciton binding energies in GaAs films on AlxGa1−xAs substrates, Int. J. Mod. Phys. B 29(30), 1550213 (2015)
CrossRef ADS Google scholar
[14]
A. L. Vartanian, A. L. Asatryan, and L. A. Vardanyan, Influence of both electric and magnetic fields on the polaron properties in a finite-potential quantum well wire, Physica E 47, 134 (2013)
CrossRef ADS Google scholar
[15]
P. Christol, P. Lefebvre and H. Mathieu, Fractionaldimensional calculation of exciton binding energies in semiconductor quantum wells and quantum-well wires, J. Appl. Phys. 74(9), 5626 (1993)
CrossRef ADS Google scholar
[16]
P. Lefebvre, P. Christol, and H. Mathieu, Excitons in semiconductor superlattices: Heuristic description of the transfer between Wannier-like and Frenkel-like regimes, Phys. Rev. B 46(20), 13603 (1992)
CrossRef ADS Google scholar
[17]
A. Thilagam and A. Matos-Abiague, Excitonic polarons in confined systems, J. Phys.: Condens. Matter 16(23), 3981 (2004)
CrossRef ADS Google scholar
[18]
E. Reyes-Gómez, L. E. Oliveira, and M. de Dios-Leyva, Shallow impurities in semiconductor superlattices: A fractional-dimensional space approach, J. Appl. Phys. 85(8), 4045 (1999)
CrossRef ADS Google scholar
[19]
I. D. Mikhailov, F. J. Betancur, R. A. Escorcia, and J. Sierra-Ortega, Shallow donors in semiconductor heterostructures: Fractal dimension approach and the variational principle, Phys. Rev. B 67(11), 115317 (2003)
CrossRef ADS Google scholar
[20]
J. Kundrotas, A. Čerškus, S. Ašmontas, G. Valušis, B. Sherliker, M. P. Halsall, M. J. Steer, E. Johannessen, and P. Harrison, Excitonic and impurity-related optical transitions in Be-doped GaAs/AlAs multiple quantum wells: Fractional-dimensional space approach, Phys. Rev. B 72(23), 235322 (2005)
CrossRef ADS Google scholar
[21]
J. Kundrotas, A. Cerškus, S. Ašmontas, G. Valušis, M. P. Halsall, E. Johannessen, and P. Harrison, Impurityinduced Huang–Rhys factor in Beδ-doped GaAs/AlAs multiple quantum wells: Fractional-dimensional space approach, Semicond. Sci. Technol. 22(9), 1070 (2007)
CrossRef ADS Google scholar
[22]
M. A. Smondyrev, B. Gerlach, and M. O. Dzero, Mean parameter model for the Pekar-Fröhlich polaron in a multilayered heterostructure, Phys. Rev. B 62(24), 16692 (2000)
CrossRef ADS Google scholar
[23]
M. Hocevar, L. T. Thanh Giang, R. Songmuang, M. den Hertog, L. Besombes, J. Bleuse, Y.M. Niquet, and N. T. Pelekanos, Residual strain and piezoelectric effects in passivated GaAs/AlGaAs core-shell nanowires, Appl. Phys. Lett. 102(19), 191103 (2013)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(674 KB)

Accesses

Citations

Detail

Sections
Recommended

/