Multipartite quantum correlations among atoms in QED cavities

J. Batle, A. Farouk, O. Tarawneh, S. Abdalla

Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 130305.

PDF(2351 KB)
PDF(2351 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 130305. DOI: 10.1007/s11467-017-0711-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Multipartite quantum correlations among atoms in QED cavities

Author information +
History +

Abstract

We study the nonlocality dynamics for two models of atoms in cavity quantum electrodynamics (QED); the first model contains atoms in a single cavity undergoing nearest-neighbor interactions with no initial correlation, and the second contains atoms confined in ndifferent and noninteracting cavities, all of which were initially prepared in a maximally correlated state of nqubits corresponding to the atomic degrees of freedom. The nonlocality evolution of the states in the second model shows that the corresponding maximal violation of a multipartite Bell inequality exhibits revivals at precise times, defining, nonlocality sudden deathsand nonlocality sudden rebirths, in analogy with entanglement. These quantum correlations are provided analytically for the second model to make the study more thorough. Differences in the first model regarding whether the array of atoms inside the cavity is arranged in a periodic or open fashion are crucial to the generation or redistribution of quantum correlations. This contribution paves the way to using the nonlocality multipartite correlation measure for describing the collective complex behavior displayed by slightly interacting cavity QED arrays.

Keywords

quantum optics / cavity quantum electrodynamics / multipartite nonlocality

Cite this article

Download citation ▾
J. Batle, A. Farouk, O. Tarawneh, S. Abdalla. Multipartite quantum correlations among atoms in QED cavities. Front. Phys., 2018, 13(1): 130305 https://doi.org/10.1007/s11467-017-0711-9

References

[1]
H.-K.Lo, S.Popescu, and T.Spiller, Introduction to Quantum Computation and Information, Singapore: World Scientific, 1998
CrossRef ADS Google scholar
[2]
A.Galindoand M. A.Martín-Delgado, Information and computation: Classical and quantum aspects, Rev. Mod. Phys. 74(2), 347 (2002)
CrossRef ADS Google scholar
[3]
M. A.Nielsenand I. L.Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000
[4]
C. P.Williamsand S. H.Clearwater, Explorations in Quantum Computing, New York: Springer, 1997
[5]
C. P.Williams, Quantum Computing and Quantum Communications, Berlin: Springer, 1998
[6]
C. H.Bennett, G.Brassard, C.Crepeau, R.Jozsa, A.Peres, and W. K.Wootters, Teleporting an unknown quantum state via dual classical and Einstein– Podolsky–Rosen channels, Phys. Rev. Lett. 70(13), 1895(1993)
CrossRef ADS Google scholar
[7]
C. H.Bennettand S. J.Wiesner, Communication via one- and two-particle operators on Einstein–Podolsky– Rosen states, Phys. Rev. Lett. 69(20), 2881(1992)
CrossRef ADS Google scholar
[8]
A.Ekertand R.Jozsa, Quantum computation and Shor’s factoring algorithm, Rev. Mod. Phys. 68(3), 733(1996)
CrossRef ADS Google scholar
[9]
G. P.Berman, G. D.Doolen, R.Mainieri, and V. I.Tsifrinovich, Introduction to Quantum Computers, Singapore: World Scientific, 1998
CrossRef ADS Google scholar
[10]
J.Batleand M.Casas, Nonlocality and entanglement in the XY-model, Phys. Rev. A82(6), 062101(2010)
CrossRef ADS Google scholar
[11]
J.Batleand M.Casas, Nonlocality and entanglement in qubit systems, J. Phys. A Math. Theor. 44(44), 445304(2011)
CrossRef ADS Google scholar
[12]
N.Gisin, Bell’s inequality holds for all non-product states, Phys. Lett. A154(5–6), 201(1991)
CrossRef ADS Google scholar
[13]
B.Schumacher, Bell’s theorem and monogamy, See: http://pirsa.org/08120020/
[14]
J.Barrett, L.Hardy, and A.Kent, No signaling and quantum key distribution, Phys. Rev. Lett. 95(1), 010503(2005)
CrossRef ADS Google scholar
[15]
A.Acín, N.Gisin, andL.Masanes, From Bell’s theorem to secure quantum key distribution, Phys. Rev. Lett. 97, 120405(2006)
CrossRef ADS Google scholar
[16]
A.Acín, N.Brunner, N.Gisin, S.Massar, S.Pironio, and V.Scarani, Device-independent security of quantum cryptography against collective attacks, Phys. Rev. Lett. 98(23), 230501(2007)
CrossRef ADS Google scholar
[17]
C.Brukner, M.Zukowski, and A.Zeilinger, Quantum communication complexity protocol with two entangled qutrits, Phys. Rev. Lett. 89(19), 197901(2002)
CrossRef ADS Google scholar
[18]
P. R.Berman(Ed.), Cavity Quantum Electrodynamics, San Diego: Academic, 1994
[19]
H. J.Kimble, Strong interactions of single atoms and photons in cavity QED, Phys. Scr. T76(1), 127(1998)
CrossRef ADS Google scholar
[20]
J. M.Raimond, M.Brune, and S.Haroche, Manipulating quantum entanglement with atoms and photons in a cavity, Rev. Mod. Phys. 73(3), 565(2001)
CrossRef ADS Google scholar
[21]
H.Mabuchiand A. C.Doherty, Cavity quantum electrodynamics: Coherence in context, Science298(5597), 1372(2002)
CrossRef ADS Google scholar
[22]
S.Harocheand J. M.Raimond, Exploring the Quantum: Atoms, Cavities, and Photons, Oxford: Oxford University Press, 2006
CrossRef ADS Google scholar
[23]
E. T.Jaynesand F. W.Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proc. IEEE51(1), 89(1963)
CrossRef ADS Google scholar
[24]
A comprehensive review on the Jaynes–Cummings model is given in: B. W. Shore and P. L. Knight, The Jaynes–Cummings model, J. Mod. Opt. 40, 1195(1993)
[25]
A.Rauschenbeutel, G.Nogues, S.Osnaghi, P.Bertet, M.Brune, J. M.Raimond, and S.Haroche, Coherent operation of a tunable quantum phase gate in cavity QED, Phys. Rev. Lett. 83(24), 5166(1999)
CrossRef ADS Google scholar
[26]
A. D.Boozer,A.Boca, R.Miller, T. E.Northup, and H. J.Kimble, Reversible state transfer between light and a single trapped atom, Phys. Rev. Lett. 98(19), 193601(2007)
CrossRef ADS Google scholar
[27]
M.Koch, C.Sames, M.Balbach, H.Chibani, A.Kubanek, K.Murr, T.Wilk, and G.Rempe, Threephoton correlations in a strongly driven atom-cavity system, Phys. Rev. Lett. 107(2), 023601(2011)
CrossRef ADS Google scholar
[28]
A.Reiserer, C.Nölleke, S.Ritter, and G.Rempe, Ground-state cooling of a single atom at the center of an optical cavity, Phys. Rev. Lett. 110(22), 223003(2013)
CrossRef ADS Google scholar
[29]
C.Sames, H.Chibani,C.Hamsen, P.Altin, T.Wilk, and G.Rempe, Antiresonance phase shift in strongly coupled cavity QED, Phys. Rev. Lett. 112, 043601
CrossRef ADS Google scholar
[30]
N.Kalb, A.Reiserer, S.Ritter, and G.Rempe, Heralded storage of a photonic quantum bit in a single atom, Phys. Rev. Lett. 114, 220501(2015)
CrossRef ADS Google scholar
[31]
T.Pellizzari, S. A.Gardiner, J. I.Cirac, and P.Zoller, Decoherence, continuous observation, and quantum computing: A cavity QED model, Phys. Rev. Lett. 75, 3788(1995)
CrossRef ADS Google scholar
[32]
S. J.van Enk, J. I.Cirac, and P.Zoller, Purifying twobit quantum gates and joint measurements in cavity QED, Phys. Rev. Lett. 79, 5178(1997)
CrossRef ADS Google scholar
[33]
J.Pachosand H.Walther, Quantum computation with trapped ions in an optical cavity, Phys. Rev. Lett. 89, 187903(2002)
CrossRef ADS Google scholar
[34]
L. M.Duan, A.Kuzmich, and H. J.Kimble, Cavity QED and quantum-information processing with “hot” trapped atoms, Phys. Rev. A67, 032305(2003)
CrossRef ADS Google scholar
[35]
X. X.Yi, X. H.Su, and L.You, Conditional quantum phase gate between two 3-state atoms, Phys. Rev. Lett. 90, 097902(2003)
CrossRef ADS Google scholar
[36]
M.Yönaç, T.Yu, and J. H.Eberly, Sudden death of entanglement of two Jaynes–Cummings atoms, J. Phys. B: At. Mol.Opt. Phys. 39, 621(2006)
CrossRef ADS Google scholar
[37]
I.Sainzand G.Björk, Entanglement invariant for the double Jaynes–Cummings model, Phys. Rev. A76, 042313(2007)
CrossRef ADS Google scholar
[38]
I. D. K.Brown, S.Stepney, A.Sudbery, and S. L.Braunstein, Searching for highly entangled multi-qubit states, J. Phys. A: Math. Gen. 38, 1119(2005)
CrossRef ADS Google scholar
[39]
J. F.Clauser, M. A.Horne, A.Shimony, and R. A.Holt, Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett. 23, 880(1969)
CrossRef ADS Google scholar
[40]
N. D.Mermin, Extreme quantum entanglement in a superposition of macroscopically distinct states, Phys. Rev. Lett. 65, 1838(1990)
CrossRef ADS Google scholar
[41]
M.Ardehali, Bell inequalities with a magnitude of violation that grows exponentially with the number of particles, Phys. Rev. A46, 5375(1992)
CrossRef ADS Google scholar
[42]
A. V.Belinskiiand D. N.Klyshko, Interference of light and Bell’s theorem, Phys. Usp. 36(8), 653(1993)
CrossRef ADS Google scholar
[43]
N.Gisinand H.Bechmann-Pasquinucci, Bell inequality, Bell states and maximally entangled states for n qubits, Phys. Lett. A246(1–2), 1 (1998)
CrossRef ADS Google scholar
[44]
V.Scarani, A.Acín,E.Schenck, and M.Aspelmeyer, Nonlocality of cluster states of qubits, Phys. Rev. A71, 042325(2005)
CrossRef ADS Google scholar
[45]
G.Svetlichny, Distinguishing three-body from two-body nonseparability by a Bell-type inequality, Phys. Rev. D35, 3066(1987)
CrossRef ADS Google scholar
[46]
K. M.O’Connorand W. K.Wootters, Entangled rings, Phys. Rev. A63, 052302(2001)
CrossRef ADS Google scholar
[47]
S.Kirkpatrick, C. D.Gelatt Jr, and M. P.Vecchi, Optimization by simulated annealing, Science220(4598), 671(1983)
CrossRef ADS Google scholar
[48]
A.Tomadin and R.Fazio, Many-body phenomena in QED-cavity arrays, J. Opt. Soc. Am. B27, 130(2010)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(2351 KB)

Accesses

Citations

Detail

Sections
Recommended

/