
Multipartite quantum correlations among atoms in QED cavities
J. Batle, A. Farouk, O. Tarawneh, S. Abdalla
Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 130305.
Multipartite quantum correlations among atoms in QED cavities
We study the nonlocality dynamics for two models of atoms in cavity quantum electrodynamics (QED); the first model contains atoms in a single cavity undergoing nearest-neighbor interactions with no initial correlation, and the second contains atoms confined in ndifferent and noninteracting cavities, all of which were initially prepared in a maximally correlated state of nqubits corresponding to the atomic degrees of freedom. The nonlocality evolution of the states in the second model shows that the corresponding maximal violation of a multipartite Bell inequality exhibits revivals at precise times, defining, nonlocality sudden deathsand nonlocality sudden rebirths, in analogy with entanglement. These quantum correlations are provided analytically for the second model to make the study more thorough. Differences in the first model regarding whether the array of atoms inside the cavity is arranged in a periodic or open fashion are crucial to the generation or redistribution of quantum correlations. This contribution paves the way to using the nonlocality multipartite correlation measure for describing the collective complex behavior displayed by slightly interacting cavity QED arrays.
quantum optics / cavity quantum electrodynamics / multipartite nonlocality
[1] |
H.-K.Lo, S.Popescu, and T.Spiller, Introduction to Quantum Computation and Information, Singapore: World Scientific, 1998
CrossRef
ADS
Google scholar
|
[2] |
A.Galindoand M. A.Martín-Delgado, Information and computation: Classical and quantum aspects, Rev. Mod. Phys. 74(2), 347 (2002)
CrossRef
ADS
Google scholar
|
[3] |
M. A.Nielsenand I. L.Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000
|
[4] |
C. P.Williamsand S. H.Clearwater, Explorations in Quantum Computing, New York: Springer, 1997
|
[5] |
C. P.Williams, Quantum Computing and Quantum Communications, Berlin: Springer, 1998
|
[6] |
C. H.Bennett, G.Brassard, C.Crepeau, R.Jozsa, A.Peres, and W. K.Wootters, Teleporting an unknown quantum state via dual classical and Einstein– Podolsky–Rosen channels, Phys. Rev. Lett. 70(13), 1895(1993)
CrossRef
ADS
Google scholar
|
[7] |
C. H.Bennettand S. J.Wiesner, Communication via one- and two-particle operators on Einstein–Podolsky– Rosen states, Phys. Rev. Lett. 69(20), 2881(1992)
CrossRef
ADS
Google scholar
|
[8] |
A.Ekertand R.Jozsa, Quantum computation and Shor’s factoring algorithm, Rev. Mod. Phys. 68(3), 733(1996)
CrossRef
ADS
Google scholar
|
[9] |
G. P.Berman, G. D.Doolen, R.Mainieri, and V. I.Tsifrinovich, Introduction to Quantum Computers, Singapore: World Scientific, 1998
CrossRef
ADS
Google scholar
|
[10] |
J.Batleand M.Casas, Nonlocality and entanglement in the XY-model, Phys. Rev. A82(6), 062101(2010)
CrossRef
ADS
Google scholar
|
[11] |
J.Batleand M.Casas, Nonlocality and entanglement in qubit systems, J. Phys. A Math. Theor. 44(44), 445304(2011)
CrossRef
ADS
Google scholar
|
[12] |
N.Gisin, Bell’s inequality holds for all non-product states, Phys. Lett. A154(5–6), 201(1991)
CrossRef
ADS
Google scholar
|
[13] |
B.Schumacher, Bell’s theorem and monogamy, See: http://pirsa.org/08120020/
|
[14] |
J.Barrett, L.Hardy, and A.Kent, No signaling and quantum key distribution, Phys. Rev. Lett. 95(1), 010503(2005)
CrossRef
ADS
Google scholar
|
[15] |
A.Acín, N.Gisin, andL.Masanes, From Bell’s theorem to secure quantum key distribution, Phys. Rev. Lett. 97, 120405(2006)
CrossRef
ADS
Google scholar
|
[16] |
A.Acín, N.Brunner, N.Gisin, S.Massar, S.Pironio, and V.Scarani, Device-independent security of quantum cryptography against collective attacks, Phys. Rev. Lett. 98(23), 230501(2007)
CrossRef
ADS
Google scholar
|
[17] |
C.Brukner, M.Zukowski, and A.Zeilinger, Quantum communication complexity protocol with two entangled qutrits, Phys. Rev. Lett. 89(19), 197901(2002)
CrossRef
ADS
Google scholar
|
[18] |
P. R.Berman(Ed.), Cavity Quantum Electrodynamics, San Diego: Academic, 1994
|
[19] |
H. J.Kimble, Strong interactions of single atoms and photons in cavity QED, Phys. Scr. T76(1), 127(1998)
CrossRef
ADS
Google scholar
|
[20] |
J. M.Raimond, M.Brune, and S.Haroche, Manipulating quantum entanglement with atoms and photons in a cavity, Rev. Mod. Phys. 73(3), 565(2001)
CrossRef
ADS
Google scholar
|
[21] |
H.Mabuchiand A. C.Doherty, Cavity quantum electrodynamics: Coherence in context, Science298(5597), 1372(2002)
CrossRef
ADS
Google scholar
|
[22] |
S.Harocheand J. M.Raimond, Exploring the Quantum: Atoms, Cavities, and Photons, Oxford: Oxford University Press, 2006
CrossRef
ADS
Google scholar
|
[23] |
E. T.Jaynesand F. W.Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proc. IEEE51(1), 89(1963)
CrossRef
ADS
Google scholar
|
[24] |
A comprehensive review on the Jaynes–Cummings model is given in: B. W. Shore and P. L. Knight, The Jaynes–Cummings model, J. Mod. Opt. 40, 1195(1993)
|
[25] |
A.Rauschenbeutel, G.Nogues, S.Osnaghi, P.Bertet, M.Brune, J. M.Raimond, and S.Haroche, Coherent operation of a tunable quantum phase gate in cavity QED, Phys. Rev. Lett. 83(24), 5166(1999)
CrossRef
ADS
Google scholar
|
[26] |
A. D.Boozer,A.Boca, R.Miller, T. E.Northup, and H. J.Kimble, Reversible state transfer between light and a single trapped atom, Phys. Rev. Lett. 98(19), 193601(2007)
CrossRef
ADS
Google scholar
|
[27] |
M.Koch, C.Sames, M.Balbach, H.Chibani, A.Kubanek, K.Murr, T.Wilk, and G.Rempe, Threephoton correlations in a strongly driven atom-cavity system, Phys. Rev. Lett. 107(2), 023601(2011)
CrossRef
ADS
Google scholar
|
[28] |
A.Reiserer, C.Nölleke, S.Ritter, and G.Rempe, Ground-state cooling of a single atom at the center of an optical cavity, Phys. Rev. Lett. 110(22), 223003(2013)
CrossRef
ADS
Google scholar
|
[29] |
C.Sames, H.Chibani,C.Hamsen, P.Altin, T.Wilk, and G.Rempe, Antiresonance phase shift in strongly coupled cavity QED, Phys. Rev. Lett. 112, 043601
CrossRef
ADS
Google scholar
|
[30] |
N.Kalb, A.Reiserer, S.Ritter, and G.Rempe, Heralded storage of a photonic quantum bit in a single atom, Phys. Rev. Lett. 114, 220501(2015)
CrossRef
ADS
Google scholar
|
[31] |
T.Pellizzari, S. A.Gardiner, J. I.Cirac, and P.Zoller, Decoherence, continuous observation, and quantum computing: A cavity QED model, Phys. Rev. Lett. 75, 3788(1995)
CrossRef
ADS
Google scholar
|
[32] |
S. J.van Enk, J. I.Cirac, and P.Zoller, Purifying twobit quantum gates and joint measurements in cavity QED, Phys. Rev. Lett. 79, 5178(1997)
CrossRef
ADS
Google scholar
|
[33] |
J.Pachosand H.Walther, Quantum computation with trapped ions in an optical cavity, Phys. Rev. Lett. 89, 187903(2002)
CrossRef
ADS
Google scholar
|
[34] |
L. M.Duan, A.Kuzmich, and H. J.Kimble, Cavity QED and quantum-information processing with “hot” trapped atoms, Phys. Rev. A67, 032305(2003)
CrossRef
ADS
Google scholar
|
[35] |
X. X.Yi, X. H.Su, and L.You, Conditional quantum phase gate between two 3-state atoms, Phys. Rev. Lett. 90, 097902(2003)
CrossRef
ADS
Google scholar
|
[36] |
M.Yönaç, T.Yu, and J. H.Eberly, Sudden death of entanglement of two Jaynes–Cummings atoms, J. Phys. B: At. Mol.Opt. Phys. 39, 621(2006)
CrossRef
ADS
Google scholar
|
[37] |
I.Sainzand G.Björk, Entanglement invariant for the double Jaynes–Cummings model, Phys. Rev. A76, 042313(2007)
CrossRef
ADS
Google scholar
|
[38] |
I. D. K.Brown, S.Stepney, A.Sudbery, and S. L.Braunstein, Searching for highly entangled multi-qubit states, J. Phys. A: Math. Gen. 38, 1119(2005)
CrossRef
ADS
Google scholar
|
[39] |
J. F.Clauser, M. A.Horne, A.Shimony, and R. A.Holt, Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett. 23, 880(1969)
CrossRef
ADS
Google scholar
|
[40] |
N. D.Mermin, Extreme quantum entanglement in a superposition of macroscopically distinct states, Phys. Rev. Lett. 65, 1838(1990)
CrossRef
ADS
Google scholar
|
[41] |
M.Ardehali, Bell inequalities with a magnitude of violation that grows exponentially with the number of particles, Phys. Rev. A46, 5375(1992)
CrossRef
ADS
Google scholar
|
[42] |
A. V.Belinskiiand D. N.Klyshko, Interference of light and Bell’s theorem, Phys. Usp. 36(8), 653(1993)
CrossRef
ADS
Google scholar
|
[43] |
N.Gisinand H.Bechmann-Pasquinucci, Bell inequality, Bell states and maximally entangled states for n qubits, Phys. Lett. A246(1–2), 1 (1998)
CrossRef
ADS
Google scholar
|
[44] |
V.Scarani, A.Acín,E.Schenck, and M.Aspelmeyer, Nonlocality of cluster states of qubits, Phys. Rev. A71, 042325(2005)
CrossRef
ADS
Google scholar
|
[45] |
G.Svetlichny, Distinguishing three-body from two-body nonseparability by a Bell-type inequality, Phys. Rev. D35, 3066(1987)
CrossRef
ADS
Google scholar
|
[46] |
K. M.O’Connorand W. K.Wootters, Entangled rings, Phys. Rev. A63, 052302(2001)
CrossRef
ADS
Google scholar
|
[47] |
S.Kirkpatrick, C. D.Gelatt Jr, and M. P.Vecchi, Optimization by simulated annealing, Science220(4598), 671(1983)
CrossRef
ADS
Google scholar
|
[48] |
A.Tomadin and R.Fazio, Many-body phenomena in QED-cavity arrays, J. Opt. Soc. Am. B27, 130(2010)
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |