Multipartite quantum correlations among atoms in QED cavities

J. Batle , A. Farouk , O. Tarawneh , S. Abdalla

Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 130305

PDF (2351KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 130305 DOI: 10.1007/s11467-017-0711-9
RESEARCH ARTICLE

Multipartite quantum correlations among atoms in QED cavities

Author information +
History +
PDF (2351KB)

Abstract

We study the nonlocality dynamics for two models of atoms in cavity quantum electrodynamics (QED); the first model contains atoms in a single cavity undergoing nearest-neighbor interactions with no initial correlation, and the second contains atoms confined in ndifferent and noninteracting cavities, all of which were initially prepared in a maximally correlated state of nqubits corresponding to the atomic degrees of freedom. The nonlocality evolution of the states in the second model shows that the corresponding maximal violation of a multipartite Bell inequality exhibits revivals at precise times, defining, nonlocality sudden deathsand nonlocality sudden rebirths, in analogy with entanglement. These quantum correlations are provided analytically for the second model to make the study more thorough. Differences in the first model regarding whether the array of atoms inside the cavity is arranged in a periodic or open fashion are crucial to the generation or redistribution of quantum correlations. This contribution paves the way to using the nonlocality multipartite correlation measure for describing the collective complex behavior displayed by slightly interacting cavity QED arrays.

Keywords

quantum optics / cavity quantum electrodynamics / multipartite nonlocality

Cite this article

Download citation ▾
J. Batle, A. Farouk, O. Tarawneh, S. Abdalla. Multipartite quantum correlations among atoms in QED cavities. Front. Phys., 2018, 13(1): 130305 DOI:10.1007/s11467-017-0711-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H.-K.Lo, S.Popescu, and T.Spiller, Introduction to Quantum Computation and Information, Singapore: World Scientific, 1998

[2]

A.Galindoand M. A.Martín-Delgado, Information and computation: Classical and quantum aspects, Rev. Mod. Phys. 74(2), 347 (2002)

[3]

M. A.Nielsenand I. L.Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000

[4]

C. P.Williamsand S. H.Clearwater, Explorations in Quantum Computing, New York: Springer, 1997

[5]

C. P.Williams, Quantum Computing and Quantum Communications, Berlin: Springer, 1998

[6]

C. H.Bennett, G.Brassard, C.Crepeau, R.Jozsa, A.Peres, and W. K.Wootters, Teleporting an unknown quantum state via dual classical and Einstein– Podolsky–Rosen channels, Phys. Rev. Lett. 70(13), 1895(1993)

[7]

C. H.Bennettand S. J.Wiesner, Communication via one- and two-particle operators on Einstein–Podolsky– Rosen states, Phys. Rev. Lett. 69(20), 2881(1992)

[8]

A.Ekertand R.Jozsa, Quantum computation and Shor’s factoring algorithm, Rev. Mod. Phys. 68(3), 733(1996)

[9]

G. P.Berman, G. D.Doolen, R.Mainieri, and V. I.Tsifrinovich, Introduction to Quantum Computers, Singapore: World Scientific, 1998

[10]

J.Batleand M.Casas, Nonlocality and entanglement in the XY-model, Phys. Rev. A82(6), 062101(2010)

[11]

J.Batleand M.Casas, Nonlocality and entanglement in qubit systems, J. Phys. A Math. Theor. 44(44), 445304(2011)

[12]

N.Gisin, Bell’s inequality holds for all non-product states, Phys. Lett. A154(5–6), 201(1991)

[13]

B.Schumacher, Bell’s theorem and monogamy, See:

[14]

J.Barrett, L.Hardy, and A.Kent, No signaling and quantum key distribution, Phys. Rev. Lett. 95(1), 010503(2005)

[15]

A.Acín, N.Gisin, andL.Masanes, From Bell’s theorem to secure quantum key distribution, Phys. Rev. Lett. 97, 120405(2006)

[16]

A.Acín, N.Brunner, N.Gisin, S.Massar, S.Pironio, and V.Scarani, Device-independent security of quantum cryptography against collective attacks, Phys. Rev. Lett. 98(23), 230501(2007)

[17]

C.Brukner, M.Zukowski, and A.Zeilinger, Quantum communication complexity protocol with two entangled qutrits, Phys. Rev. Lett. 89(19), 197901(2002)

[18]

P. R.Berman(Ed.), Cavity Quantum Electrodynamics, San Diego: Academic, 1994

[19]

H. J.Kimble, Strong interactions of single atoms and photons in cavity QED, Phys. Scr. T76(1), 127(1998)

[20]

J. M.Raimond, M.Brune, and S.Haroche, Manipulating quantum entanglement with atoms and photons in a cavity, Rev. Mod. Phys. 73(3), 565(2001)

[21]

H.Mabuchiand A. C.Doherty, Cavity quantum electrodynamics: Coherence in context, Science298(5597), 1372(2002)

[22]

S.Harocheand J. M.Raimond, Exploring the Quantum: Atoms, Cavities, and Photons, Oxford: Oxford University Press, 2006

[23]

E. T.Jaynesand F. W.Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proc. IEEE51(1), 89(1963)

[24]

A comprehensive review on the Jaynes–Cummings model is given in: B. W. Shore and P. L. Knight, The Jaynes–Cummings model, J. Mod. Opt. 40, 1195(1993)

[25]

A.Rauschenbeutel, G.Nogues, S.Osnaghi, P.Bertet, M.Brune, J. M.Raimond, and S.Haroche, Coherent operation of a tunable quantum phase gate in cavity QED, Phys. Rev. Lett. 83(24), 5166(1999)

[26]

A. D.Boozer,A.Boca, R.Miller, T. E.Northup, and H. J.Kimble, Reversible state transfer between light and a single trapped atom, Phys. Rev. Lett. 98(19), 193601(2007)

[27]

M.Koch, C.Sames, M.Balbach, H.Chibani, A.Kubanek, K.Murr, T.Wilk, and G.Rempe, Threephoton correlations in a strongly driven atom-cavity system, Phys. Rev. Lett. 107(2), 023601(2011)

[28]

A.Reiserer, C.Nölleke, S.Ritter, and G.Rempe, Ground-state cooling of a single atom at the center of an optical cavity, Phys. Rev. Lett. 110(22), 223003(2013)

[29]

C.Sames, H.Chibani,C.Hamsen, P.Altin, T.Wilk, and G.Rempe, Antiresonance phase shift in strongly coupled cavity QED, Phys. Rev. Lett. 112, 043601

[30]

N.Kalb, A.Reiserer, S.Ritter, and G.Rempe, Heralded storage of a photonic quantum bit in a single atom, Phys. Rev. Lett. 114, 220501(2015)

[31]

T.Pellizzari, S. A.Gardiner, J. I.Cirac, and P.Zoller, Decoherence, continuous observation, and quantum computing: A cavity QED model, Phys. Rev. Lett. 75, 3788(1995)

[32]

S. J.van Enk, J. I.Cirac, and P.Zoller, Purifying twobit quantum gates and joint measurements in cavity QED, Phys. Rev. Lett. 79, 5178(1997)

[33]

J.Pachosand H.Walther, Quantum computation with trapped ions in an optical cavity, Phys. Rev. Lett. 89, 187903(2002)

[34]

L. M.Duan, A.Kuzmich, and H. J.Kimble, Cavity QED and quantum-information processing with “hot” trapped atoms, Phys. Rev. A67, 032305(2003)

[35]

X. X.Yi, X. H.Su, and L.You, Conditional quantum phase gate between two 3-state atoms, Phys. Rev. Lett. 90, 097902(2003)

[36]

M.Yönaç, T.Yu, and J. H.Eberly, Sudden death of entanglement of two Jaynes–Cummings atoms, J. Phys. B: At. Mol.Opt. Phys. 39, 621(2006)

[37]

I.Sainzand G.Björk, Entanglement invariant for the double Jaynes–Cummings model, Phys. Rev. A76, 042313(2007)

[38]

I. D. K.Brown, S.Stepney, A.Sudbery, and S. L.Braunstein, Searching for highly entangled multi-qubit states, J. Phys. A: Math. Gen. 38, 1119(2005)

[39]

J. F.Clauser, M. A.Horne, A.Shimony, and R. A.Holt, Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett. 23, 880(1969)

[40]

N. D.Mermin, Extreme quantum entanglement in a superposition of macroscopically distinct states, Phys. Rev. Lett. 65, 1838(1990)

[41]

M.Ardehali, Bell inequalities with a magnitude of violation that grows exponentially with the number of particles, Phys. Rev. A46, 5375(1992)

[42]

A. V.Belinskiiand D. N.Klyshko, Interference of light and Bell’s theorem, Phys. Usp. 36(8), 653(1993)

[43]

N.Gisinand H.Bechmann-Pasquinucci, Bell inequality, Bell states and maximally entangled states for n qubits, Phys. Lett. A246(1–2), 1 (1998)

[44]

V.Scarani, A.Acín,E.Schenck, and M.Aspelmeyer, Nonlocality of cluster states of qubits, Phys. Rev. A71, 042325(2005)

[45]

G.Svetlichny, Distinguishing three-body from two-body nonseparability by a Bell-type inequality, Phys. Rev. D35, 3066(1987)

[46]

K. M.O’Connorand W. K.Wootters, Entangled rings, Phys. Rev. A63, 052302(2001)

[47]

S.Kirkpatrick, C. D.Gelatt Jr, and M. P.Vecchi, Optimization by simulated annealing, Science220(4598), 671(1983)

[48]

A.Tomadin and R.Fazio, Many-body phenomena in QED-cavity arrays, J. Opt. Soc. Am. B27, 130(2010)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (2351KB)

714

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/