
Clock frequency estimation under spontaneous emission
Xi-Zhou Qin (秦锡洲), Jia-Hao Huang (黄嘉豪), Hong-Hua Zhong (钟宏华), Chaohong Lee (李朝红)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 130302.
Clock frequency estimation under spontaneous emission
We investigate the quantum dynamics of a driven two-level system under spontaneous emission and its application in clock frequency estimation. By using the Lindblad equation to describe the system, we analytically obtain its exact solutions, which show three different regimes: Rabi oscillation, damped oscillation, and overdamped decay. From the analytical solutions, we explore how the spontaneous emission affects the clock frequency estimation. We find that under a moderate spontaneous emission rate, the transition frequency can still be inferred from the Rabi oscillation. Our results enable potential practical applications in frequency measurement and quantum control under decoherence.
clock frequency estimation / two-level system / spontaneous emission
[1] |
J. L.Hall, Nobel lecture: Defining and measuring optical frequencies, Rev. Mod. Phys. 78(4), 1279 (2006)
CrossRef
ADS
Google scholar
|
[2] |
T. W.Hänsch, Nobel lecture: Passion for precision, Rev. Mod. Phys. 78(4), 1297(2006)
CrossRef
ADS
Google scholar
|
[3] |
H.Margolis, Timekeepers of the future, Nat. Phys. 10(2), 82(2014)
|
[4] |
M.Takamotoand H.Katori, Spectroscopy of the 1S0–3P0 clock transition of 87Sr in an optical lattice, Phys. Rev. Lett. 91(22), 223001(2003)
CrossRef
ADS
Google scholar
|
[5] |
T.Steinmetz, T.Wilken, C.Araujo-Hauck, R.Holzwarth, T. W.Hänsch, L.Pasquini, A.Manescau, S.D’Odorico, M. T.Murphy, T.Kentischer, W.Schmidt, and T.Udem, Laser frequency combs for astronomical observations, Science321(5894), 1335(2008)
CrossRef
ADS
Google scholar
|
[6] |
M. S.Grewal,A. P.Andrews, and C. G.Bartone, Global Navigation Satellite Systems, Inertial Navigation, and Integration, New York: John Wiley & Sons, 2013
|
[7] |
J.Kitching, S.Knappe, and E. A.Donley, Atomic sensors – A review, IEEE Sens. J. 11(9), 1749(2011)
CrossRef
ADS
Google scholar
|
[8] |
D.Budkerand M.Romalis, Optical magnetometry, Nat. Phys. 3(4), 227(2007)
|
[9] |
I. I.Rabi, Space quantization in a gyrating magnetic field, Phys. Rev. 51(8), 652(1937)
CrossRef
ADS
Google scholar
|
[10] |
N.Hinkley, J. A.Sherman, N. B.Phillips, M.Schioppo, N. D.Lemke, K.Beloy, M.Pizzocaro,C. W.Oates, and A. D.Ludlow, An atomic clock with 10−18 instability, Science341(6151), 1215(2013)
CrossRef
ADS
Google scholar
|
[11] |
B. J.Bloom, T. L.Nicholson, J. R.Williams, S. L.Campbell, M.Bishof, X.Zhang, W.Zhang, S. L.Bromley, and J.Ye, An optical lattice clock with accuracy and stability at the 10−18 level, Nature506(7486), 71(2014)
CrossRef
ADS
Google scholar
|
[12] |
T. L.Nicholson,S. L.Campbell, R. B.Hutson, G. E.Marti, B. J.Bloom, R. L.McNally, W.Zhang, M. D.Barrett, M. S.Safronova, G. F.Strouse, W. L.Tew, and J.Ye, Systematic evaluation of an atomic clock at 2×10−18 total uncertainty, Nat. Commun. 6, 6896(2015)
CrossRef
ADS
Google scholar
|
[13] |
S. G.Porsevand A.Derevianko, Multipolar theory of blackbody radiation shift of atomic energy levels and its implications for optical lattice clocks, Phys. Rev. A74(2), 020502(R) (2006)
|
[14] |
A. V.Taichenachev, V. I.Yudin, V. D.Ovsiannikov, and V. G.Pal’chikov, Optical lattice polarization effects on hyperpolarizability of atomic clock transitions, Phys. Rev. Lett. 97(17), 173601(2006)
CrossRef
ADS
Google scholar
|
[15] |
K.Gibble, Decoherence and collisional frequency shifts of trapped bosons and fermions, Phys. Rev. Lett. 103(11), 113202(2009)
CrossRef
ADS
Google scholar
|
[16] |
T.Rosenband,D. B.Hume, P. O.Schmidt, C. W.Chou, A.Brusch, L.Lorini, W. H.Oskay, R. E.Drullinger, T. M.Fortier, J. E.Stalnaker,S. A.Diddams, W. C.Swann,N. R.Newbury, W. M.Itano, D. J.Wineland, and J. C.Bergquist, Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place, Science319(5871), 1808(2008)
CrossRef
ADS
Google scholar
|
[17] |
C. W.Chou, D. B.Hume,J. C. J.Koelemeij,D. J.Wineland, and T.Rosenband, Frequency comparison of two high-accuracy Al+ optical clocks, Phys. Rev. Lett. 104(7), 070802(2010)
CrossRef
ADS
Google scholar
|
[18] |
N.Huntemann, C.Sanner, B.Lipphardt, C.Tamm, and E.Peik, Single-ion atomic clock with 3×10−18 systematic uncertainty, Phys. Rev. Lett. 116(6), 063001(2016)
CrossRef
ADS
Google scholar
|
[19] |
S.Weinberg, Lindblad decoherence in atomic clocks, Phys. Rev. A94(4), 042117(2016)
CrossRef
ADS
Google scholar
|
[20] |
E.Barnesand S.Das Sarma, Analytically solvable driven time-dependent two-level quantum systems, Phys. Rev. Lett. 109(6), 060401(2012)
CrossRef
ADS
Google scholar
|
[21] |
L. D.Landau, On the theory of transfer of energy at collisions II, Phys. Z. Sowjetunion2, 46(1932)
|
[22] |
C.Zener, Non-adiabatic crossing of energy levels, Proc. R. Soc. Lond. A137(833), 696(1932)
CrossRef
ADS
Google scholar
|
[23] |
L.Allenand J. H.Eberly,Optical Resonance and Two- Level Atoms, New York: Dover Publications, 1987
|
[24] |
R. W.Boyd, Nonlinear Optics, Boston: Academic Press, 1992
|
[25] |
P.Meystre, Atom Optics, New York: Springer-Verlag, 2001
|
[26] |
S.Harocheand J. M.Raimond, Exploring the Quantum: Atoms, Cavities, and Photons, New York: Oxford University Press, 2006
CrossRef
ADS
Google scholar
|
[27] |
P. A.Ivanovand D.Porras, Adiabatic quantum metrology with strongly correlated quantum optical systems, Phys. Rev. A88(2), 023803(2013)
CrossRef
ADS
Google scholar
|
[28] |
N.Malossi, M. G.Bason, M.Viteau, E.Arimondo, D.Ciampini, R.Mannella, and O.Morsch, Quantum driving of a two level system: Quantum speed limit and superadiabatic protocols – an experimental investigation, J. Phys. Conf. Ser. 442(1), 012062(2013)
CrossRef
ADS
Google scholar
|
[29] |
Z.Tian, J.Wang, H.Fan, andJ.Jing, Relativistic quantum metrology in open system dynamics, Sci. Rep. 5(1), 7946(2015)
CrossRef
ADS
Google scholar
|
[30] |
P. A.Ivanov, K.Singer, N. V.Vitanov, and D.Porras, Quantum sensors assisted by spontaneous symmetry breaking for detecting very small forces, Phys. Rev. Appl. 4(5), 054007(2015)
CrossRef
ADS
Google scholar
|
[31] |
A.Greilich, S. E.Economou, S.Spatzek, D. R.Yakovlev, D.Reuter, A. D.Wieck, T. L.Reinecke, and M.Bayer, Ultrafast optical rotations of electron spins in quantum dots, Nat. Phys. 5(4), 262(2009)
|
[32] |
E.Poem, O.Kenneth, Y.Kodriano, Y.Benny, S.Khatsevich, J. E.Avron, and D.Gershoni, Optically induced rotation of an exciton spin in a semiconductor quantum dot, Phys. Rev. Lett. 107(8), 087401(2011)
CrossRef
ADS
Google scholar
|
[33] |
M. G.Bason, M.Viteau, N.Malossi, P.Huillery, E.Arimondo, D.Ciampini, R.Fazio, V.Giovannetti, R.Mannella, and O.Morsch, High-fidelity quantum driving, Nat. Phys. 8(2), 147(2011)
|
[34] |
S.Sauer, C.Gneiting, and A.Buchleitner, Optimal coherent control to counteract dissipation, Phys. Rev. Lett. 111(3), 030405(2013)
CrossRef
ADS
Google scholar
|
[35] |
D.Daems, A.Ruschhaupt, D.Sugny, and S.Guérin, Robust quantum control by a single-shot shaped pulse, Phys. Rev. Lett. 111(5), 050404(2013)
CrossRef
ADS
Google scholar
|
[36] |
Y.Wuand X.Yang, Strong-coupling theory of periodically driven two-level systems, Phys. Rev. Lett. 98(1), 013601(2007)
CrossRef
ADS
Google scholar
|
[37] |
X.Yangand Y.Wu, Weak-coupling theory for semiclassical periodically driven two-level systems: Beyoud rotating-wave approximation, Commum. Theor. Phys. 48(2), 339(2007)
CrossRef
ADS
Google scholar
|
[38] |
Q.Xieand W.Hai, Analytical results for a monochromatically driven two-level system, Phys. Rev. A82(3), 032117(2010)
CrossRef
ADS
Google scholar
|
[39] |
W.Hai, K.Hai, and Q.Chen, Transparent control of an exactly solvable two-level system via combined modulations, Phys. Rev. A87(2), 023403(2013)
CrossRef
ADS
Google scholar
|
[40] |
E.Barnes, Analytically solvable two-level quantum systems and Landau-Zener interferometry, Phys. Rev. A88(1), 013818(2013)
CrossRef
ADS
Google scholar
|
[41] |
A.Messinaand H.Nakazato, Analytically solvable Hamiltonians for quantum two-level systems and their dynamics, J. Phys. A Math. Theor. 47(44), 445302(2014)
CrossRef
ADS
Google scholar
|
[42] |
H. P.Breuerand F.Petruccione, The Theory of Open Quantum Systems, New York: Oxford University Press, 2002
|
[43] |
M. A.Nielsenand I. L.Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000
|
[44] |
M.Grifoniand P.Hänggi, Driven quantum tunneling, Phys. Rep. 304(5–6), 229(1998)
CrossRef
ADS
Google scholar
|
[45] |
M.Thorwart, L.Hartmann, I.Goychuk, and P.Hänggi, Controlling decoherence of a two-level atom in a lossy cavity, J. Mod. Opt. 47(14–15), 2905(2000)
CrossRef
ADS
Google scholar
|
[46] |
D.Mogilevtsev, A. P.Nisovtsev, S.Kilin, S. B.Cavalcanti, H. S.Brandi, and L. E.Oliveira, Drivingdependent damping of Rabi oscillations in two-level semiconductor systems, Phys. Rev. Lett. 100(1), 017401(2008)
CrossRef
ADS
Google scholar
|
[47] |
A.Sergiand K. G.Zloshchastiev, Non-Hermitian quantum dynamics of a two-level system and models of dissipative environments, Int. J. Mod. Phys. B27(27), 1350163(2013)
CrossRef
ADS
Google scholar
|
[48] |
K. N.Zlatanov, G. S.Vasilev, P. A.Ivanov, and N. V.Vitanov, Exact solution of the Bloch equations for the nonresonant exponential model in the presence of dephasing, Phys. Rev. A92(4), 043404(2015)
CrossRef
ADS
Google scholar
|
[49] |
M. S. P.Eastham, The Spectral Theory of Periodic Differential Equations, Edinburgh and London: Scottish Academic Press, 1973
|
/
〈 |
|
〉 |