Clock frequency estimation under spontaneous emission

Xi-Zhou Qin (秦锡洲), Jia-Hao Huang (黄嘉豪), Hong-Hua Zhong (钟宏华), Chaohong Lee (李朝红)

Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 130302.

PDF(1449 KB)
PDF(1449 KB)
Front. Phys. ›› 2018, Vol. 13 ›› Issue (1) : 130302. DOI: 10.1007/s11467-017-0706-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Clock frequency estimation under spontaneous emission

Author information +
History +

Abstract

We investigate the quantum dynamics of a driven two-level system under spontaneous emission and its application in clock frequency estimation. By using the Lindblad equation to describe the system, we analytically obtain its exact solutions, which show three different regimes: Rabi oscillation, damped oscillation, and overdamped decay. From the analytical solutions, we explore how the spontaneous emission affects the clock frequency estimation. We find that under a moderate spontaneous emission rate, the transition frequency can still be inferred from the Rabi oscillation. Our results enable potential practical applications in frequency measurement and quantum control under decoherence.

Keywords

clock frequency estimation / two-level system / spontaneous emission

Cite this article

Download citation ▾
Xi-Zhou Qin (秦锡洲), Jia-Hao Huang (黄嘉豪), Hong-Hua Zhong (钟宏华), Chaohong Lee (李朝红). Clock frequency estimation under spontaneous emission. Front. Phys., 2018, 13(1): 130302 https://doi.org/10.1007/s11467-017-0706-6

References

[1]
J. L.Hall, Nobel lecture: Defining and measuring optical frequencies, Rev. Mod. Phys. 78(4), 1279 (2006)
CrossRef ADS Google scholar
[2]
T. W.Hänsch, Nobel lecture: Passion for precision, Rev. Mod. Phys. 78(4), 1297(2006)
CrossRef ADS Google scholar
[3]
H.Margolis, Timekeepers of the future, Nat. Phys. 10(2), 82(2014)
[4]
M.Takamotoand H.Katori, Spectroscopy of the 1S03P0 clock transition of 87Sr in an optical lattice, Phys. Rev. Lett. 91(22), 223001(2003)
CrossRef ADS Google scholar
[5]
T.Steinmetz, T.Wilken, C.Araujo-Hauck, R.Holzwarth, T. W.Hänsch, L.Pasquini, A.Manescau, S.D’Odorico, M. T.Murphy, T.Kentischer, W.Schmidt, and T.Udem, Laser frequency combs for astronomical observations, Science321(5894), 1335(2008)
CrossRef ADS Google scholar
[6]
M. S.Grewal,A. P.Andrews, and C. G.Bartone, Global Navigation Satellite Systems, Inertial Navigation, and Integration, New York: John Wiley & Sons, 2013
[7]
J.Kitching, S.Knappe, and E. A.Donley, Atomic sensors – A review, IEEE Sens. J. 11(9), 1749(2011)
CrossRef ADS Google scholar
[8]
D.Budkerand M.Romalis, Optical magnetometry, Nat. Phys. 3(4), 227(2007)
[9]
I. I.Rabi, Space quantization in a gyrating magnetic field, Phys. Rev. 51(8), 652(1937)
CrossRef ADS Google scholar
[10]
N.Hinkley, J. A.Sherman, N. B.Phillips, M.Schioppo, N. D.Lemke, K.Beloy, M.Pizzocaro,C. W.Oates, and A. D.Ludlow, An atomic clock with 10−18 instability, Science341(6151), 1215(2013)
CrossRef ADS Google scholar
[11]
B. J.Bloom, T. L.Nicholson, J. R.Williams, S. L.Campbell, M.Bishof, X.Zhang, W.Zhang, S. L.Bromley, and J.Ye, An optical lattice clock with accuracy and stability at the 10−18 level, Nature506(7486), 71(2014)
CrossRef ADS Google scholar
[12]
T. L.Nicholson,S. L.Campbell, R. B.Hutson, G. E.Marti, B. J.Bloom, R. L.McNally, W.Zhang, M. D.Barrett, M. S.Safronova, G. F.Strouse, W. L.Tew, and J.Ye, Systematic evaluation of an atomic clock at 2×10−18 total uncertainty, Nat. Commun. 6, 6896(2015)
CrossRef ADS Google scholar
[13]
S. G.Porsevand A.Derevianko, Multipolar theory of blackbody radiation shift of atomic energy levels and its implications for optical lattice clocks, Phys. Rev. A74(2), 020502(R) (2006)
[14]
A. V.Taichenachev, V. I.Yudin, V. D.Ovsiannikov, and V. G.Pal’chikov, Optical lattice polarization effects on hyperpolarizability of atomic clock transitions, Phys. Rev. Lett. 97(17), 173601(2006)
CrossRef ADS Google scholar
[15]
K.Gibble, Decoherence and collisional frequency shifts of trapped bosons and fermions, Phys. Rev. Lett. 103(11), 113202(2009)
CrossRef ADS Google scholar
[16]
T.Rosenband,D. B.Hume, P. O.Schmidt, C. W.Chou, A.Brusch, L.Lorini, W. H.Oskay, R. E.Drullinger, T. M.Fortier, J. E.Stalnaker,S. A.Diddams, W. C.Swann,N. R.Newbury, W. M.Itano, D. J.Wineland, and J. C.Bergquist, Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place, Science319(5871), 1808(2008)
CrossRef ADS Google scholar
[17]
C. W.Chou, D. B.Hume,J. C. J.Koelemeij,D. J.Wineland, and T.Rosenband, Frequency comparison of two high-accuracy Al+ optical clocks, Phys. Rev. Lett. 104(7), 070802(2010)
CrossRef ADS Google scholar
[18]
N.Huntemann, C.Sanner, B.Lipphardt, C.Tamm, and E.Peik, Single-ion atomic clock with 3×10−18 systematic uncertainty, Phys. Rev. Lett. 116(6), 063001(2016)
CrossRef ADS Google scholar
[19]
S.Weinberg, Lindblad decoherence in atomic clocks, Phys. Rev. A94(4), 042117(2016)
CrossRef ADS Google scholar
[20]
E.Barnesand S.Das Sarma, Analytically solvable driven time-dependent two-level quantum systems, Phys. Rev. Lett. 109(6), 060401(2012)
CrossRef ADS Google scholar
[21]
L. D.Landau, On the theory of transfer of energy at collisions II, Phys. Z. Sowjetunion2, 46(1932)
[22]
C.Zener, Non-adiabatic crossing of energy levels, Proc. R. Soc. Lond. A137(833), 696(1932)
CrossRef ADS Google scholar
[23]
L.Allenand J. H.Eberly,Optical Resonance and Two- Level Atoms, New York: Dover Publications, 1987
[24]
R. W.Boyd, Nonlinear Optics, Boston: Academic Press, 1992
[25]
P.Meystre, Atom Optics, New York: Springer-Verlag, 2001
[26]
S.Harocheand J. M.Raimond, Exploring the Quantum: Atoms, Cavities, and Photons, New York: Oxford University Press, 2006
CrossRef ADS Google scholar
[27]
P. A.Ivanovand D.Porras, Adiabatic quantum metrology with strongly correlated quantum optical systems, Phys. Rev. A88(2), 023803(2013)
CrossRef ADS Google scholar
[28]
N.Malossi, M. G.Bason, M.Viteau, E.Arimondo, D.Ciampini, R.Mannella, and O.Morsch, Quantum driving of a two level system: Quantum speed limit and superadiabatic protocols – an experimental investigation, J. Phys. Conf. Ser. 442(1), 012062(2013)
CrossRef ADS Google scholar
[29]
Z.Tian, J.Wang, H.Fan, andJ.Jing, Relativistic quantum metrology in open system dynamics, Sci. Rep. 5(1), 7946(2015)
CrossRef ADS Google scholar
[30]
P. A.Ivanov, K.Singer, N. V.Vitanov, and D.Porras, Quantum sensors assisted by spontaneous symmetry breaking for detecting very small forces, Phys. Rev. Appl. 4(5), 054007(2015)
CrossRef ADS Google scholar
[31]
A.Greilich, S. E.Economou, S.Spatzek, D. R.Yakovlev, D.Reuter, A. D.Wieck, T. L.Reinecke, and M.Bayer, Ultrafast optical rotations of electron spins in quantum dots, Nat. Phys. 5(4), 262(2009)
[32]
E.Poem, O.Kenneth, Y.Kodriano, Y.Benny, S.Khatsevich, J. E.Avron, and D.Gershoni, Optically induced rotation of an exciton spin in a semiconductor quantum dot, Phys. Rev. Lett. 107(8), 087401(2011)
CrossRef ADS Google scholar
[33]
M. G.Bason, M.Viteau, N.Malossi, P.Huillery, E.Arimondo, D.Ciampini, R.Fazio, V.Giovannetti, R.Mannella, and O.Morsch, High-fidelity quantum driving, Nat. Phys. 8(2), 147(2011)
[34]
S.Sauer, C.Gneiting, and A.Buchleitner, Optimal coherent control to counteract dissipation, Phys. Rev. Lett. 111(3), 030405(2013)
CrossRef ADS Google scholar
[35]
D.Daems, A.Ruschhaupt, D.Sugny, and S.Guérin, Robust quantum control by a single-shot shaped pulse, Phys. Rev. Lett. 111(5), 050404(2013)
CrossRef ADS Google scholar
[36]
Y.Wuand X.Yang, Strong-coupling theory of periodically driven two-level systems, Phys. Rev. Lett. 98(1), 013601(2007)
CrossRef ADS Google scholar
[37]
X.Yangand Y.Wu, Weak-coupling theory for semiclassical periodically driven two-level systems: Beyoud rotating-wave approximation, Commum. Theor. Phys. 48(2), 339(2007)
CrossRef ADS Google scholar
[38]
Q.Xieand W.Hai, Analytical results for a monochromatically driven two-level system, Phys. Rev. A82(3), 032117(2010)
CrossRef ADS Google scholar
[39]
W.Hai, K.Hai, and Q.Chen, Transparent control of an exactly solvable two-level system via combined modulations, Phys. Rev. A87(2), 023403(2013)
CrossRef ADS Google scholar
[40]
E.Barnes, Analytically solvable two-level quantum systems and Landau-Zener interferometry, Phys. Rev. A88(1), 013818(2013)
CrossRef ADS Google scholar
[41]
A.Messinaand H.Nakazato, Analytically solvable Hamiltonians for quantum two-level systems and their dynamics, J. Phys. A Math. Theor. 47(44), 445302(2014)
CrossRef ADS Google scholar
[42]
H. P.Breuerand F.Petruccione, The Theory of Open Quantum Systems, New York: Oxford University Press, 2002
[43]
M. A.Nielsenand I. L.Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000
[44]
M.Grifoniand P.Hänggi, Driven quantum tunneling, Phys. Rep. 304(5–6), 229(1998)
CrossRef ADS Google scholar
[45]
M.Thorwart, L.Hartmann, I.Goychuk, and P.Hänggi, Controlling decoherence of a two-level atom in a lossy cavity, J. Mod. Opt. 47(14–15), 2905(2000)
CrossRef ADS Google scholar
[46]
D.Mogilevtsev, A. P.Nisovtsev, S.Kilin, S. B.Cavalcanti, H. S.Brandi, and L. E.Oliveira, Drivingdependent damping of Rabi oscillations in two-level semiconductor systems, Phys. Rev. Lett. 100(1), 017401(2008)
CrossRef ADS Google scholar
[47]
A.Sergiand K. G.Zloshchastiev, Non-Hermitian quantum dynamics of a two-level system and models of dissipative environments, Int. J. Mod. Phys. B27(27), 1350163(2013)
CrossRef ADS Google scholar
[48]
K. N.Zlatanov, G. S.Vasilev, P. A.Ivanov, and N. V.Vitanov, Exact solution of the Bloch equations for the nonresonant exponential model in the presence of dephasing, Phys. Rev. A92(4), 043404(2015)
CrossRef ADS Google scholar
[49]
M. S. P.Eastham, The Spectral Theory of Periodic Differential Equations, Edinburgh and London: Scottish Academic Press, 1973

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1449 KB)

Accesses

Citations

Detail

Sections
Recommended

/