A computational investigation of topological insulator Bi2Se3 film

Yi-Bin Hu, Yong-Hong Zhao, Xue-Feng Wang

Front. Phys. ›› 2014, Vol. 9 ›› Issue (6) : 760-767.

PDF(424 KB)
PDF(424 KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (6) : 760-767. DOI: 10.1007/s11467-014-0441-1
RESEARCH ARTICLE
RESEARCH ARTICLE

A computational investigation of topological insulator Bi2Se3 film

Author information +
History +

Abstract

Topological insulators have a bulk band gap like an ordinary insulator and conducting states on their edge or surface which are formed by spin–orbit coupling and protected by time-reversal symmetry. We report theoretical analyses of the electronic properties of three-dimensional topological insulator Bi2Se3 film on different energies. We choose five different energies (–123, –75, 0, 180, 350 meV) around the Dirac cone (–113 meV). When energy is close to the Dirac cone, the properties of wave function match the topological insulator’s hallmark perfectly. When energy is far way from the Dirac cone, the hallmark of topological insulator is broken and the helical states disappear. The electronic properties of helical states are dug out from the calculation results. The spin-momentum locking of the helical states are confirmed. A 3-fold symmetry of the helical states in Brillouin zone is also revealed. The penetration depth of the helical states is two quintuple layers which can be identified from layer projection. The charge contribution on each quintuple layer depends on the energy, and has completely different behavior along K and M direction in Brillouin zone. From orbital projection, we can find that the maximum charge contribution of the helical states is pz orbit and the charge contribution on pyand px orbits have 2-fold symmetry.

Graphical abstract

Keywords

topological insulator / spin–orbit coupling / helical state

Cite this article

Download citation ▾
Yi-Bin Hu, Yong-Hong Zhao, Xue-Feng Wang. A computational investigation of topological insulator Bi2Se3 film. Front. Phys., 2014, 9(6): 760‒767 https://doi.org/10.1007/s11467-014-0441-1

References

[1]
C. L. Kane and E. J. Mele, Z2 topological order and the quantum spin Hall effect, Phys. Rev. Lett., 2005, 95(14): 146802
CrossRef ADS Google scholar
[2]
B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Quantumu spin Hall effect and topological phase transition in HgTe quantum wells, Science, 2006, 314(5806): 1757
CrossRef ADS Google scholar
[3]
M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys., 2010, 82(4): 3045
CrossRef ADS Google scholar
[4]
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys., 2011, 83(4): 1057
CrossRef ADS Google scholar
[5]
X. L. Qi and S. C. Zhang, The quantum spin Hall effect and topological insulators, Phys. Today, 2010, 63(1): 33
CrossRef ADS Google scholar
[6]
J. E. Moore, The birth of topological insulators, Nature, 2010, 464(7286): 194
CrossRef ADS Google scholar
[7]
L. Fu and C. L. Kane, Topological insulators with inversion symmetry, Phys. Rev. B, 2007, 76(4): 045302
CrossRef ADS Google scholar
[8]
X. L. Qi, T. L. Hughes, and S. C. Zhang, Topological field theory of time-reversal invariant insulators, Phys. Rev. B, 2008, 78(19): 195424
CrossRef ADS Google scholar
[9]
Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Observation of a large-gap topological-insulator class with a single Dirac cone on the surface, Nat. Phys., 2009, 5(6): 398
CrossRef ADS Google scholar
[10]
H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys., 2009, 5(6): 438
CrossRef ADS Google scholar
[11]
D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dil, J. Osterwalder, L. Patthey, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Observation of time-reversal-protected single-Dirac-cone topologicalinsulator states in Bi2Te3 and Sb2Te3, Phys. Rev. Lett., 2009, 103(14): 146401
CrossRef ADS Google scholar
[12]
K. He, Y. Zhang, K. He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, J. F. Jia, Z. Fang, X. Dai, W. Y. Shan, S. Q. Shen, Q. Niu, X. L. Qi, S. C. Zhang, X. C. Ma, and Q. K. Xue, Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit, Nat. Phys., 2010, 6(8): 584
CrossRef ADS Google scholar
[13]
D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, A tunable topological insulator in the spin helical Dirac transport regime, Nature, 2009, 460(7259): 1101
CrossRef ADS Google scholar
[14]
Y. S. Hor, A. Richardella, P. Roushan, Y. Xia, J. G. Checkelsky, A. Yazdani, M. Z. Hasan, N. P. Ong, and R. J. Cava, p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications, Phys. Rev. B, 2009, 79(19): 195208
CrossRef ADS Google scholar
[15]
S. R. Park, W. S. Jung, C. Kim, D. J. Song, C. Kim, S. Kimura, K. D. Lee, and N. Hur, Quasiparticle scattering and the protected nature of the topological states in a parent topological insulator Bi2Se3, Phys. Rev. B, 2010, 81: 041405(R)
CrossRef ADS Google scholar
[16]
C. X. Liu, X. L. Qi, H. J. Zhang, X. Dai, Z. Fang, and S. C. Zhang, Model Hamiltonian for topological insulators, Phys. Rev. B, 2010, 82(4): 045122
CrossRef ADS Google scholar
[17]
W. Zhang, R. Yu, S. J. Zhang, X. Dai, and Z. Fang, Firstprinciples studies of the three-dimensional strong topological insulators Bi2Te3, Bi2Se3 and Sb2Te3, New J. Phys., 2010, 12(6): 065013
CrossRef ADS Google scholar
[18]
Jeongwoo Kim, Jinwoong Kim, and Seung-Hoon Jhi, Prediction of topological insulating behavior in crystalline Ge-Sb-Te, Phys. Rev. B, 2010, 82: 201312(R)
CrossRef ADS Google scholar
[19]
O. V. Yazyev, J. E. Moore, and S. G. Louie, Spin polarization and transport of surface states in the topological insulators Bi2Se3 and Bi2Te3 from first principles, Phys. Rev. Lett., 2010, 105(26): 266806
CrossRef ADS Google scholar
[20]
Z. Alpichshev, J. G. Analytis, J.-H. Chu, I. R. Fisher, Y. L. Chen, Z. X. Shen, A. Fang, and A. Kapitulnik, STM imaging of electronic waves on the surface of Bi2Te3: Topologically protected surface states and hexagonal warping effects, Phys. Rev. Lett., 2010, 104(1): 016401
CrossRef ADS Google scholar
[21]
Y. H. Zhao, Y. B. Hu, L. Liu, Y. Zhu, and H. Guo, Helical states of topological insulator Bi2Se3, Nano Lett., 2011, 11(5): 2088
CrossRef ADS Google scholar
[22]
R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, and Z. Fang, Quantized anomalous Hall effect in magnetic topological insulators, Science, 2010, 329(5987): 61
CrossRef ADS Google scholar
[23]
T. M. Schmidt, R. H. Miwa, and A. Fazzio, Spin texture and magnetic anisotropy of Co impurities in Bi2Se3 topological insulators, Phys. Rev. B, 2011, 84(24): 245418
CrossRef ADS Google scholar
[24]
P. Blaha, K. Schwarz, P. Sorantin, and S. B. Trickey, Fullpotential, linearized augmented plane wave programs for crystalline systems, Comput. Phys. Commun., 1990, 59(2): 399
CrossRef ADS Google scholar
[25]
Nanodcal is developed by NanoAcademic Technologies Inc. Nanodcal is an LCAO implementation of density functional theory within the Keldysh nonequilibrium Greens function formalism. It is a general purpose tool for ab initio modeling of electronic structure, equilibrium and non-equilibrium quantum transport.
[26]
J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B, 2001, 63(24): 245407
CrossRef ADS Google scholar
[27]
L. Kleinman and D. M. Bylander, Efficacious form for model pseudopotentials, Phys. Rev. Lett., 1982, 48(20): 1425
CrossRef ADS Google scholar
[28]
G. Theurich and N. A. Hill, Self-consistent treatment of spinorbit coupling in solids using relativistic fully separable ab initio pseudopotentials, Phys. Rev. B, 2001, 64(7): 073106
CrossRef ADS Google scholar
[29]
L. Fernández-Seivane, M. A. Oliveria, S. Sanvito, and J. Ferrer, On-site approximation for spin–orbit coupling in linear combination of atomic orbitals density functional methods, J. Phys.: Condens. Matter, 2006, 18(34): 7999
CrossRef ADS Google scholar
[30]
J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B, 1992, 45(23): 13244
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(424 KB)

Accesses

Citations

Detail

Sections
Recommended

/