Frontiers of Optoelectronics >
Propagation properties of beams generated by Gaussian mirror resonator in fractional Fourier transform plane
Received date: 24 Apr 2009
Accepted date: 27 Aug 2009
Published date: 05 Dec 2009
Copyright
Based on the definition of the fractional Fourier transform (FRFT) and irradiance moments in the cylindrical coordinate system, the propagation expressions and kurtosis parameter of beams generated by Gaussian mirror resonator passing through the ideal fractional Fourier transformation systems are obtained. The propagation properties and kurtosis parametric characteristic of the beams in the FRFT plane are analyzed in detail. Some numerical examples are given to illustrate the analytical results. The influences of the fractional order on the intensity distribution and the kurtosis parameter of the beams are also investigated. The results show that the intensity distribution and the kurtosis parameter of the beams in the FRFT plane are closely related to the fractional order and beam parameters.
Bin TANG . Propagation properties of beams generated by Gaussian mirror resonator in fractional Fourier transform plane[J]. Frontiers of Optoelectronics, 2009 , 2(4) : 397 -402 . DOI: 10.1007/s12200-009-0074-0
1 |
Mendlovic D, Ozaktas H M. Fractional Fourier transforms and their optical implementation: I. Journal of the Optical Society of America A, 1993, 10(9): 1875–1881
|
2 |
Ozaktas H M, Mendlovic D. Fractional Fourier transforms and their optical implementation: II. Journal of the Optical Society of America A, 1993, 10(12): 2522–2531
|
3 |
Lohmann A W. Image rotation, Wigner rotation, and the fractional Fourier transform. Journal of the Optical Society of America A, 1993, 10(10): 2181–2186
|
4 |
Zhang Y, Dong B, Gu B, Yang G. Beam shaping in the fractional Fourier transform domain. Journal of the Optical Society of America A, 1998, 15(5): 1114–1120
|
5 |
Xue X, Wei H Q, Kirk A G. Beam analysis by fractional Fourier transform. Optics Letters, 2001, 26(22): 1746–1748
|
6 |
Lin Q, Cai Y. Fractional Fourier transform for partially coherent Gaussian-Schell model beams. Optics Letters, 2002, 27(19): 1672–1674
|
7 |
Cai Y, Lin Q. Fractional Fourier transform for elliptical Gaussian beams. Optics Communications, 2003, 217(1-6): 7–13
|
8 |
Cai Y, Lin Q. Properties of a flattened Gaussian beam in the fractional Fourier transform plane. Journal of Optics A: Pure and Applied Optics, 2003, 5(3): 272–275
|
9 |
Cai Y, Lin Q. Transformation and spectrum properties of partially coherent beams in the fractional Fourier transform plane. Journal of the Optical Society of America A, 2003, 20(8): 1528–1536
|
10 |
Cai Y, Ge D, Lin Q. Fractional Fourier transform for partially coherent and partially polarized Gaussian-Schell model beams. Journal of Optics A: Pure and Applied Optics, 2003, 5(5): 453–459
|
11 |
Cai Y, Lin Q. The fractional Fourier transform for a partially coherent pulse. Journal of Optics A: Pure and Applied Optics, 2004, 6(4): 307–311
|
12 |
Zhao D, Mao H, Liu H, Wang S, Jing F, Wei X. Propagation of Hermite-cosh-Gaussian beams in apertured fractional Fourier transforming systems. Optics Communications, 2004, 236(4-6): 225–235
|
13 |
Zhao D, Mao H, Zheng C, Wang S, Jing F, Wei X, Zhu Q, Liu H. The propagation properties and kurtosis parametric characteristics of Hermite-cosh-Gaussian beams passing through fractional Fourier transformation systems. Optik - International Journal for Light and Electron Optics, 2005, 116(10): 461–468
|
14 |
Zheng C. Fractional Fourier transform for a hollow Gaussian beam. Physics Letters A, 2006, 355(2): 156–161
|
15 |
Zheng C. Fractional Fourier transform for off-axis elliptical Gaussian beams. Optics Communications, 2006, 259(2): 445–448
|
16 |
Du X, Zhao D. Fractional Fourier transform of truncated elliptical Gaussian beams. Applied Optics, 2006, 45(36): 9049–9052
|
17 |
Du X, Zhao D. Fractional Fourier transforms of elliptical Hermite-cosh-Gaussian beams. Physics Letters A, 2007, 366(3): 271–275
|
18 |
Du X, Zhao D. Fractional Fourier transform of off-axial elliptical cosh-Gaussian beams. Optik - International Journal for Light and Electron Optics, 2008, 119(8): 379–382
|
19 |
Zheng C. Fractional Fourier transform of an elliptical dark-hollow beam. Optics and Laser Technology, 2008, 40(4): 632–640
|
20 |
Zhou G. Fractional Fourier transform of a higher-order cosh-Gaussian beam. Journal of Modern Optics, 2009, 56(7): 886–892
|
21 |
Zhou G. Fractional Fourier transform of Lorentz-Gaussian beams. Journal of the Optical Society of America A, 2009, 26(2): 350–355
|
22 |
Chen S, Zhang T, Feng X. Propagation properties of cosh-squared-Gaussian beam through fractional Fourier transform systems. Optics Communications, 2009, 282(6): 1083–1087
|
23 |
Ganiel U, Hardy A. Eigenmodes of optical resonators with mirrors having Gaussian reflectivity profiles. Applied Optics, 1976, 15(9): 2145–2149
|
24 |
McCarthy N, Lavigne P. Optical resonators with Gaussian reflectivity mirrors: misalignment sensitivity. Applied Optics, 1983, 22(17): 2704–2708
|
25 |
McCarthy N, Lavigne P. Large-size Gaussian mode in unstable resonators using Gaussian mirrors. Optics Letters, 1985, 10(11): 553–555
|
26 |
Deng D, Wei C, Yi K, Shao J, Fan Z, Tian Y. Propagation properties of beam generated by Gaussian mirror resonator. Optics Communications, 2006, 258(1): 43–50
|
27 |
Deng D, Xia Z, Wei C, Shao J, Fan Z. Far-field intensity distribution, M2 factor of beams generated by Gaussian mirror resonator. Optik - International Journal for Light and Electron Optics, 2007, 118(11): 533–536
|
28 |
Deng D, Shen J, Tian Y, Shao J, Fan Z. Propagation properties of beams generated by Gaussian mirror resonator in uniaxial crystals. Optik - International Journal for Light and Electron Optics, 2007, 118(11): 547–551
|
29 |
Martinez-Herrero R, Piquero G, Mejias P M. On the propagation of the kurtosis parameter of general beams. Optics Communications, 1995, 115(3-4): 225–232
|
30 |
Amarande S A. Beam propagation factor and the kurtosis parameter of flattened Gaussian beams. Optics Communications, 1996, 129(5-6): 311–317
|
/
〈 | 〉 |