Propagation properties of beams generated by Gaussian mirror resonator in fractional Fourier transform plane

Bin TANG

PDF(165 KB)
PDF(165 KB)
Front. Optoelectron. ›› 2009, Vol. 2 ›› Issue (4) : 397-402. DOI: 10.1007/s12200-009-0074-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Propagation properties of beams generated by Gaussian mirror resonator in fractional Fourier transform plane

Author information +
History +

Abstract

Based on the definition of the fractional Fourier transform (FRFT) and irradiance moments in the cylindrical coordinate system, the propagation expressions and kurtosis parameter of beams generated by Gaussian mirror resonator passing through the ideal fractional Fourier transformation systems are obtained. The propagation properties and kurtosis parametric characteristic of the beams in the FRFT plane are analyzed in detail. Some numerical examples are given to illustrate the analytical results. The influences of the fractional order on the intensity distribution and the kurtosis parameter of the beams are also investigated. The results show that the intensity distribution and the kurtosis parameter of the beams in the FRFT plane are closely related to the fractional order and beam parameters.

Keywords

Gaussian mirror resonator / fractional Fourier transform (FRFT) / propagation property / kurtosis parameter

Cite this article

Download citation ▾
Bin TANG. Propagation properties of beams generated by Gaussian mirror resonator in fractional Fourier transform plane. Front Optoelec Chin, 2009, 2(4): 397‒402 https://doi.org/10.1007/s12200-009-0074-0

References

[1]
Mendlovic D, Ozaktas H M. Fractional Fourier transforms and their optical implementation: I. Journal of the Optical Society of America A, 1993, 10(9): 1875–1881
CrossRef Google scholar
[2]
Ozaktas H M, Mendlovic D. Fractional Fourier transforms and their optical implementation: II. Journal of the Optical Society of America A, 1993, 10(12): 2522–2531
CrossRef Google scholar
[3]
Lohmann A W. Image rotation, Wigner rotation, and the fractional Fourier transform. Journal of the Optical Society of America A, 1993, 10(10): 2181–2186
CrossRef Google scholar
[4]
Zhang Y, Dong B, Gu B, Yang G. Beam shaping in the fractional Fourier transform domain. Journal of the Optical Society of America A, 1998, 15(5): 1114–1120
CrossRef Google scholar
[5]
Xue X, Wei H Q, Kirk A G. Beam analysis by fractional Fourier transform. Optics Letters, 2001, 26(22): 1746–1748
CrossRef Google scholar
[6]
Lin Q, Cai Y. Fractional Fourier transform for partially coherent Gaussian-Schell model beams. Optics Letters, 2002, 27(19): 1672–1674
CrossRef Google scholar
[7]
Cai Y, Lin Q. Fractional Fourier transform for elliptical Gaussian beams. Optics Communications, 2003, 217(1-6): 7–13
[8]
Cai Y, Lin Q. Properties of a flattened Gaussian beam in the fractional Fourier transform plane. Journal of Optics A: Pure and Applied Optics, 2003, 5(3): 272–275
CrossRef Google scholar
[9]
Cai Y, Lin Q. Transformation and spectrum properties of partially coherent beams in the fractional Fourier transform plane. Journal of the Optical Society of America A, 2003, 20(8): 1528–1536
CrossRef Google scholar
[10]
Cai Y, Ge D, Lin Q. Fractional Fourier transform for partially coherent and partially polarized Gaussian-Schell model beams. Journal of Optics A: Pure and Applied Optics, 2003, 5(5): 453–459
CrossRef Google scholar
[11]
Cai Y, Lin Q. The fractional Fourier transform for a partially coherent pulse. Journal of Optics A: Pure and Applied Optics, 2004, 6(4): 307–311
CrossRef Google scholar
[12]
Zhao D, Mao H, Liu H, Wang S, Jing F, Wei X. Propagation of Hermite-cosh-Gaussian beams in apertured fractional Fourier transforming systems. Optics Communications, 2004, 236(4-6): 225–235
CrossRef Google scholar
[13]
Zhao D, Mao H, Zheng C, Wang S, Jing F, Wei X, Zhu Q, Liu H. The propagation properties and kurtosis parametric characteristics of Hermite-cosh-Gaussian beams passing through fractional Fourier transformation systems. Optik - International Journal for Light and Electron Optics, 2005, 116(10): 461–468
[14]
Zheng C. Fractional Fourier transform for a hollow Gaussian beam. Physics Letters A, 2006, 355(2): 156–161
CrossRef Google scholar
[15]
Zheng C. Fractional Fourier transform for off-axis elliptical Gaussian beams. Optics Communications, 2006, 259(2): 445–448
CrossRef Google scholar
[16]
Du X, Zhao D. Fractional Fourier transform of truncated elliptical Gaussian beams. Applied Optics, 2006, 45(36): 9049–9052
CrossRef Google scholar
[17]
Du X, Zhao D. Fractional Fourier transforms of elliptical Hermite-cosh-Gaussian beams. Physics Letters A, 2007, 366(3): 271–275
CrossRef Google scholar
[18]
Du X, Zhao D. Fractional Fourier transform of off-axial elliptical cosh-Gaussian beams. Optik - International Journal for Light and Electron Optics, 2008, 119(8): 379–382
[19]
Zheng C. Fractional Fourier transform of an elliptical dark-hollow beam. Optics and Laser Technology, 2008, 40(4): 632–640
CrossRef Google scholar
[20]
Zhou G. Fractional Fourier transform of a higher-order cosh-Gaussian beam. Journal of Modern Optics, 2009, 56(7): 886–892
CrossRef Google scholar
[21]
Zhou G. Fractional Fourier transform of Lorentz-Gaussian beams. Journal of the Optical Society of America A, 2009, 26(2): 350–355
CrossRef Google scholar
[22]
Chen S, Zhang T, Feng X. Propagation properties of cosh-squared-Gaussian beam through fractional Fourier transform systems. Optics Communications, 2009, 282(6): 1083–1087
CrossRef Google scholar
[23]
Ganiel U, Hardy A. Eigenmodes of optical resonators with mirrors having Gaussian reflectivity profiles. Applied Optics, 1976, 15(9): 2145–2149
CrossRef Google scholar
[24]
McCarthy N, Lavigne P. Optical resonators with Gaussian reflectivity mirrors: misalignment sensitivity. Applied Optics, 1983, 22(17): 2704–2708
CrossRef Google scholar
[25]
McCarthy N, Lavigne P. Large-size Gaussian mode in unstable resonators using Gaussian mirrors. Optics Letters, 1985, 10(11): 553–555
CrossRef Google scholar
[26]
Deng D, Wei C, Yi K, Shao J, Fan Z, Tian Y. Propagation properties of beam generated by Gaussian mirror resonator. Optics Communications, 2006, 258(1): 43–50
CrossRef Google scholar
[27]
Deng D, Xia Z, Wei C, Shao J, Fan Z. Far-field intensity distribution, M2 factor of beams generated by Gaussian mirror resonator. Optik - International Journal for Light and Electron Optics, 2007, 118(11): 533–536
[28]
Deng D, Shen J, Tian Y, Shao J, Fan Z. Propagation properties of beams generated by Gaussian mirror resonator in uniaxial crystals. Optik - International Journal for Light and Electron Optics, 2007, 118(11): 547–551
[29]
Martinez-Herrero R, Piquero G, Mejias P M. On the propagation of the kurtosis parameter of general beams. Optics Communications, 1995, 115(3-4): 225–232
CrossRef Google scholar
[30]
Amarande S A. Beam propagation factor and the kurtosis parameter of flattened Gaussian beams. Optics Communications, 1996, 129(5-6): 311–317

Acknowledgements

This work was supported by the Scientific Found of Jiangsu Polytechnic University (No. ZMF08020014) and the Scientific Research Found of Jiangsu Provincial Education Department (No. 08KJD140007).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(165 KB)

Accesses

Citations

Detail

Sections
Recommended

/