Frontiers of Optoelectronics >
Tapered photonic crystal fiber for supercontinuum generation in telecommunication windows
Received date: 17 Nov 2008
Accepted date: 03 Dec 2008
Published date: 05 Sep 2009
Copyright
We numerically studied supercontinuum generation in a tapered photonic crystal fiber with flattened dispersion properties. The fiber was weakly tapered to have normal dispersion at wavelengths around 1.55 μm after a certain distance. We pumped 4 ps pulses with low peak power and found that flatly broadened, wideband supercontinuum was generated in telecommunication windows. Furthermore, we also demonstrated the effects of tapered length and pulse width of the pump pulse on supercontinuum generation.
Key words: fiber optics; photonic crystal fiber; dispersion; supercontinuum
Yongzhao XU , Zhixin CHEN , Hongtao LI , Yanfen WEI . Tapered photonic crystal fiber for supercontinuum generation in telecommunication windows[J]. Frontiers of Optoelectronics, 2009 , 2(3) : 293 -298 . DOI: 10.1007/s12200-009-0013-0
1 |
Ravi Kanth Kumar V V, George A K, Reeves W H, Knight J C,Russell P St J . Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Optics Express, 2002, 10(25): 1520-1525
|
2 |
Yu Y Q, Ruan S C, Du C L, Yao J Q. Spectral broadening in the 1.3 μm region using a 1.8-m-long photonic crystal fiber by femtosecond pulses from an optical parametric amplifier. Acta Photonica Sinica, 2005, 34(4): 481-484 (in Chinese)
|
3 |
Xu Y Z, Ren X M, Wang Z N, Zhang X, Huang Y Q. Flat supercontinuum generation at 1550 nm in a dispersion-flattened microstructure fibre using picosecond pulse. Chinese Physics Letters, 2007, 24(3): 734-737
|
4 |
Hu M L, Wang Q Y, Li Y F, Wang Z, Zhang Z G, Chai L, Zhang R B. Experimental analysis of the dependence factor during supercontinuum generation in photonic crystal fiber. Acta Physica Sinica, 2004, 53(12): 4243-4247 (in Chinese)
|
5 |
Yu Y Q, Ruan S C, Du C L, Yao J Q. Supercontinuum generation using a polarization-maintaining photonic crystal fibre by a regeneratively amplified Ti:sapphire laser. Chinese Physics Letters, 2005, 22(2): 384-387
|
6 |
Kudlinski A, George A K. Knight J C. Travers J C, Rulkov A B, Popov S V, Taylor J R. Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation. Optics Express, 2006, 14(12): 5715-5722
|
7 |
Ohara T, Takara H, Yamamoto T, Masuda H, Morioka T, Abe M, Takahashi H. Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source. Journal of Lightwave Technology, 2006, 24(6): 2311-2317
|
8 |
Xu Y Z, Ren X M, Wang Z N, Zhang X, Huang Y Q. Flatly broadened supercontinuum generation at 10 Gbit/s using dispersion-flattened photonic crystal fibre with small normal dispersion. Electronics Letters, 2007, 43(2): 87-88
|
9 |
Yusoff Z, Petropoulos P, Furusawa K, Monro T M, Richardson D J. A 36-channel × 10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber. IEEE Photonics Technology Letters, 2003, 15 (12): 1689-1691
|
10 |
Nakasyotani T, Toda H, Kuri T, Kitayama K. Wavelength-division-multiplexed millimeter-waveband radio-on-fiber system using a supercontinuum light source. Journal of Lightwave Technology, 2006, 24(1): 404-410
|
11 |
Lee J H, Kim C H, Han Y G, Lee S B. WDM-based passive optical network upstream transmission at 1.25 Gb/s using Fabry–Pérot laser diodes injected with spectrum-sliced, depolarized, continuous-wave supercontinuum source. IEEE Photonics Technology Letters, 2006, 18 (17–20): 2108-2110
|
12 |
Wu W Q, Chen X W, Zhou H, Zhou K F, Lin X S, Lan S. Investigation of the ultraflattened dispersion in photonic crystal fibers with hybrid cores. Acta Photonica Sinica, 2006, 35(1): 109-113 (in Chinese)
|
13 |
Saitoh K, Koshiba M. Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window. Optics Express, 2004, 12(10): 2027-2032
|
14 |
Wu T L, Chao C H. A novel ultraflattened dispersion photonic crystal fiber. IEEE Photonics Technology Letters, 2005, 17 (1); 67-69
|
15 |
Matsui T, Nakajima K, Sankawa I. Dispersion compensation over all the telecommunication bands with double-cladding photonic-crystal fiber. Journal of Lightwave Technology, 2007, 25(3): 757-762
|
16 |
Liu J G, Xue L F, Wang Z, Kai G Y, Liu Y G, Zhang W G, Dong X Y. Large anomalous dispersion at short wavelength and modal properties of a photonic crystal fiber with large air holes. IEEE Journal of Quantum Electronics, 2006, 42 (9): 961-968
|
17 |
Ju J, Jin W, Suleyman Demokan M. Design of single-polarization single-mode photonic crystal fiber at 1.30 and 1.55 μm. Journal of Lightwave Technology, 2006, 24(2): 825-830
|
18 |
Yamamoto T, Kubota H, Kawanishi S, Tanaka M, Yamaguchi S. Supercontinuum generation at 1.55 μm in a dispersion-flattened polarization-maintaining photonic crystal fiber. Optics Express, 2003, 11(13): 1537-1540
|
19 |
Saitoh K, Koshiba M. Full-vectorial imaginary-distance beam propagation method based on finite element scheme: application to photonic crystal fibers. IEEE Journal of Quantum Electronics, 2002, 38 (7): 927-933
|
20 |
Agrawal G P. Nonlinear Fiber Optics. 2nd ed. New York: Academic Press, 1995
|
/
〈 | 〉 |