Tapered photonic crystal fiber for supercontinuum generation in telecommunication windows
Yongzhao XU, Zhixin CHEN, Hongtao LI, Yanfen WEI
Tapered photonic crystal fiber for supercontinuum generation in telecommunication windows
We numerically studied supercontinuum generation in a tapered photonic crystal fiber with flattened dispersion properties. The fiber was weakly tapered to have normal dispersion at wavelengths around 1.55 μm after a certain distance. We pumped 4 ps pulses with low peak power and found that flatly broadened, wideband supercontinuum was generated in telecommunication windows. Furthermore, we also demonstrated the effects of tapered length and pulse width of the pump pulse on supercontinuum generation.
fiber optics / photonic crystal fiber / dispersion / supercontinuum
[1] |
Ravi Kanth Kumar V V, George A K, Reeves W H, Knight J C,Russell P St J . Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Optics Express, 2002, 10(25): 1520-1525
|
[2] |
Yu Y Q, Ruan S C, Du C L, Yao J Q. Spectral broadening in the 1.3 μm region using a 1.8-m-long photonic crystal fiber by femtosecond pulses from an optical parametric amplifier. Acta Photonica Sinica, 2005, 34(4): 481-484 (in Chinese)
|
[3] |
Xu Y Z, Ren X M, Wang Z N, Zhang X, Huang Y Q. Flat supercontinuum generation at 1550 nm in a dispersion-flattened microstructure fibre using picosecond pulse. Chinese Physics Letters, 2007, 24(3): 734-737
CrossRef
Google scholar
|
[4] |
Hu M L, Wang Q Y, Li Y F, Wang Z, Zhang Z G, Chai L, Zhang R B. Experimental analysis of the dependence factor during supercontinuum generation in photonic crystal fiber. Acta Physica Sinica, 2004, 53(12): 4243-4247 (in Chinese)
|
[5] |
Yu Y Q, Ruan S C, Du C L, Yao J Q. Supercontinuum generation using a polarization-maintaining photonic crystal fibre by a regeneratively amplified Ti:sapphire laser. Chinese Physics Letters, 2005, 22(2): 384-387
CrossRef
Google scholar
|
[6] |
Kudlinski A, George A K. Knight J C. Travers J C, Rulkov A B, Popov S V, Taylor J R. Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation. Optics Express, 2006, 14(12): 5715-5722
CrossRef
Google scholar
|
[7] |
Ohara T, Takara H, Yamamoto T, Masuda H, Morioka T, Abe M, Takahashi H. Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source. Journal of Lightwave Technology, 2006, 24(6): 2311-2317
CrossRef
Google scholar
|
[8] |
Xu Y Z, Ren X M, Wang Z N, Zhang X, Huang Y Q. Flatly broadened supercontinuum generation at 10 Gbit/s using dispersion-flattened photonic crystal fibre with small normal dispersion. Electronics Letters, 2007, 43(2): 87-88
CrossRef
Google scholar
|
[9] |
Yusoff Z, Petropoulos P, Furusawa K, Monro T M, Richardson D J. A 36-channel × 10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber. IEEE Photonics Technology Letters, 2003, 15 (12): 1689-1691
CrossRef
Google scholar
|
[10] |
Nakasyotani T, Toda H, Kuri T, Kitayama K. Wavelength-division-multiplexed millimeter-waveband radio-on-fiber system using a supercontinuum light source. Journal of Lightwave Technology, 2006, 24(1): 404-410
CrossRef
Google scholar
|
[11] |
Lee J H, Kim C H, Han Y G, Lee S B. WDM-based passive optical network upstream transmission at 1.25 Gb/s using Fabry–Pérot laser diodes injected with spectrum-sliced, depolarized, continuous-wave supercontinuum source. IEEE Photonics Technology Letters, 2006, 18 (17–20): 2108-2110
CrossRef
Google scholar
|
[12] |
Wu W Q, Chen X W, Zhou H, Zhou K F, Lin X S, Lan S. Investigation of the ultraflattened dispersion in photonic crystal fibers with hybrid cores. Acta Photonica Sinica, 2006, 35(1): 109-113 (in Chinese)
|
[13] |
Saitoh K, Koshiba M. Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window. Optics Express, 2004, 12(10): 2027-2032
CrossRef
Google scholar
|
[14] |
Wu T L, Chao C H. A novel ultraflattened dispersion photonic crystal fiber. IEEE Photonics Technology Letters, 2005, 17 (1); 67-69
CrossRef
Google scholar
|
[15] |
Matsui T, Nakajima K, Sankawa I. Dispersion compensation over all the telecommunication bands with double-cladding photonic-crystal fiber. Journal of Lightwave Technology, 2007, 25(3): 757-762
CrossRef
Google scholar
|
[16] |
Liu J G, Xue L F, Wang Z, Kai G Y, Liu Y G, Zhang W G, Dong X Y. Large anomalous dispersion at short wavelength and modal properties of a photonic crystal fiber with large air holes. IEEE Journal of Quantum Electronics, 2006, 42 (9): 961-968
CrossRef
Google scholar
|
[17] |
Ju J, Jin W, Suleyman Demokan M. Design of single-polarization single-mode photonic crystal fiber at 1.30 and 1.55 μm. Journal of Lightwave Technology, 2006, 24(2): 825-830
CrossRef
Google scholar
|
[18] |
Yamamoto T, Kubota H, Kawanishi S, Tanaka M, Yamaguchi S. Supercontinuum generation at 1.55 μm in a dispersion-flattened polarization-maintaining photonic crystal fiber. Optics Express, 2003, 11(13): 1537-1540
|
[19] |
Saitoh K, Koshiba M. Full-vectorial imaginary-distance beam propagation method based on finite element scheme: application to photonic crystal fibers. IEEE Journal of Quantum Electronics, 2002, 38 (7): 927-933
CrossRef
Google scholar
|
[20] |
Agrawal G P. Nonlinear Fiber Optics. 2nd ed. New York: Academic Press, 1995
|
/
〈 | 〉 |