1. Kuhlmey B T, McPhedran R C, de Sterke C M, et al.. Micro-structured optical fibers: where's theedge? Optics Express, 2002, 10(22): 1285–1290
2. Foster M, Gaeta A . Ultra-low threshold supercontinuumgeneration in sub-wavelength waveguides. Optics Express, 2004, 12(14): 3137–3143. doi:10.1364/OPEX.12.003137
3. Podlipensky A, Szarniak P, Joly N Y, et al.. Bound soliton pairs in photonic crystal fiber. Optics Express, 2007, 15(4): 1653–1662. doi:10.1364/OE.15.001653
4. Luan F, Skryabin D V, Yulin A V, et al.. Energy exchange between colliding solitons inphotonic crystal fibers. Optics Express, 2006, 14(21): 9844–9853. doi:10.1364/OE.14.009844
5. Zhang R, Teipel J, Giessen H . Theoretical design of a liquid-core photonic crystalfiber for supercontinuum generation. OpticsExpress, 2006, 14(15): 6800–6812. doi:10.1364/OE.14.006800
6. Saitoh K, Fujisawa T, Kirihara T, et al.. Approximate empirical relations for nonlinearphotonic crystal fibers. Optics Express, 2006, 14(14): 6572–6582. doi:10.1364/OE.14.006572
7. Takara H, Ohara T, Mori K, et al.. More than 1000 channel optical frequency chaingeneration from single supercontinuum source with 12.5 GHz channelspacing. Electronics Letters, 2000, 36(25): 2089–2090. doi:10.1049/el:20001461
8. Saitoh K, Koshiba M . Highly nonlinear dispersion-flattenedphotonic crystal fibers for supercontinuum generation in a telecommunicationwindow. Optics Express, 2004, 12(10): 2027–2032. doi:10.1364/OPEX.12.002027
9. Yamamoto T, Kubota H, Kawanishi S, et al.. Supercontinuum generation at 1.55 um in a dispersion-flattenedpolarization-maintaining photonic crystal fiber. Optics Express, 2003, 11(13): 1537–1540
10. Varshney S, Fujisawa T, Saitoh K, et al.. Novel design of inherently gain-flattened discretehighly nonlinear photonic crystal fiber Raman amplifier and dispersioncompensation using a single pump in C-band. Optics Express, 13(23): 9516–9526. doi:10.1364/OPEX.13.009516
11. Kudlinski A, George A K, Knight J C, et al.. Zero-dispersion wavelength decreasing photoniccrystal fibers for ultraviolet-extend supercontinuum generation. Optics Express, 2006, 14(12): 5715–5722. doi:10.1364/OE.14.005715
12. Omenetto F G, Wolchover N A, Wehner M R, et al.. Spectrally smooth supercontinuum for 350 nmto 3 μm in sub-centimeter lengths of soft-glass photonic crystalfibers. Optics Express, 2006, 14(11): 4928–4934. doi:10.1364/OE.14.004928
13. Kano H, Hamaguchi H . In-vivo multi-nonlinear opticalimaging of a living cell using a supercontinuum light source generatedfrom a photonic crystal fiber. Optics Express, 2006, 14(7): 2798–2804. doi:10.1364/OE.14.002798
14. Fu L, Jain A, Xie H, et al.. Nonlinear optical endoscopy based on a double-cladphotonic crystal fiber and a MEMS mirror. Optics Express, 2006, 14(3): 1027–1032. doi:10.1364/OE.14.001027
15. Hilligsøe K M, Andersen T V, Paulsen H N, et al.. Supercontinuum generation in a photonic crystalfiber with two zero dispersion wavelengths. Optics Express, 2004, 12(6): 1045–1054. doi:10.1364/OPEX.12.001045
16. Huttunen A, Törmä P . Effect of wavelength dependenceof non-linearity, gain, and dispersion in photonic crystal fiber amplifiers. Optics Express, 2005, 13(11): 4286–4295. doi:10.1364/OPEX.13.004286
17. Efimov A, Taylor A, Omenetto F G, et al.. Time-spectrally-resolved ultrafast nonlineardynamics in small-core photonic crystal fibers: Experiment and modelling. Optics Express, 2004, 12(26): 6498–6507. doi:10.1364/OPEX.12.006498
18. Zhang R, Teipel J, Giessen H . Theoretical design of a liquid-core photonic crystalfiber for supercontinuum generation. OpticsExpress, 2006, 14(15): 6800–6812. doi:10.1364/OE.14.006800
19. Genty G, Lehtonen M, Ludvigsen H, et al.. Enhanced bandwidth of supercontinuum generatedin micro-structured fibers. Optics Express, 2004, 12(15): 3471–3480. doi:10.1364/OPEX.12.003471
20. Ranka J K, Windeler R S, Stentz A J . Visible continuum generation in air-silica microstructureoptical fibers with anomalous dispersion at 800 nm. Optics Letters, 2000, 25(1): 25–27. doi:10.1364/OL.25.000025
21. Hu M L, Wang C Y, Song Y J, et al.. Mode-selective mapping and control of vectorialnonlinear-optical processes in multimode photonic crystal fibers. Optics Express, 2006, 14(3): 1189–1198. doi:10.1364/OE.14.001189
22. Chow K K, Shu C, Lin C, et al.. Extinction ratio improvement by pump-modulatedfour-wave mixing in a dispersion flattened nonlinear photonic crystalfiber. Optics Express, 2005, 13(22): 8900–8905. doi:10.1364/OPEX.13.008900
23. Saitoh K, Florous N, Koshiba M . Ultra flattened chromatic dispersion controllabilityusing a defected core photonic crystal fiber with low confinementlosses. Optics Express, 2005, 13(21): 8365–8371. doi:10.1364/OPEX.13.008365
24. Fuerbach A, Steinvurzel P, Bolger J, et al.. Nonlinear pulse propagation at zero dispersionwavelength in anti-resonant photonic crystal fibers. Optics Express, 2005, 13(8): 2977–2987. doi:10.1364/OPEX.13.002977
25. Dudley J, Coen S . Fundamental limits to few-cyclepulse generation from compression of supercontinuum spectra generatedin photonic crystal fiber. Optics Express, 2004, 12(11): 2423–2428. doi:10.1364/OPEX.12.002423
26. Zhang H, Yu S, Zhang J, et al.. Effect of frequency chirp on supercontinuumgeneration in photonic crystal fibers with two zero-dispersion wavelengths. Optics Express, 2007, 15(3): 1147–1154. doi:10.1364/OE.15.001147
27. Gorbach A V, Skryabin D V, Stone J M, et al.. Four-wave mixing of solitons with radiationand quasi-nondispersive wave packets at the short wavelength edgeof a supercontinuum. Optics Express, 2006, 14(21): 9854–9863. doi:10.1364/OE.14.009854
28. Räikkönen E, Genty G, Kimmelma O, et al.. Supercontinuum generation by nanosecond dual-wavelengthpumping in micro-structured optical fibers. Optics Express, 2006, 14(17): 7914–7923. doi:10.1364/OE.14.007914
29. Genty G, Ritari T, Ludvigsen H . Supercontinuum generation in large mode area micro-structuredfibers. Optics Express, 2005, 13(21): 8625–8633. doi:10.1364/OPEX.13.008625
30. Hu M L, Wang C Y, Li Y F, et al.. Tunable supercontinuum generation in a highindex-step photonic-crystal fiber with a comma-shaped core. Optics Express, 2006, 14(5): 1942–1950. doi:10.1364/OE.14.001942