High nonlinear photonic crystal fiber and its supercontinuum spectrum

CHEN Wei1, LI Jinyan2, LI Shiyu2, JIANG Zuowen2, LI Haiqing2, PENG Jinggang2

PDF(138 KB)
PDF(138 KB)
Front. Optoelectron. ›› 2008, Vol. 1 ›› Issue (1-2) : 75-78. DOI: 10.1007/s12200-008-0004-6

High nonlinear photonic crystal fiber and its supercontinuum spectrum

  • CHEN Wei1, LI Jinyan2, LI Shiyu2, JIANG Zuowen2, LI Haiqing2, PENG Jinggang2
Author information +
History +

Abstract

The high nonlinear photonic crystal fiber with pure silica core has been designed and fabricated, and the practical structure parameters of the fabricated fiber sample coincided precisely with the parameters we designed. The core diameter is 1.65 ?m; the air hole diameter is 4.75 ?m; the distance between the center of two holes is 5.35 ?m; the zero dispersion wavelength of the fiber is 1120 nm; the dispersion at 800 nm is -88 ps(nmkm)-1; and the nonlinear coefficient of this photonic crystal fiber is 112 (Wkm)-1. The broadly spanning supercontinuum emission with a smooth spectrum stretching from 450 to 1400 nm was attained by the injection of 30 fs Ti:sapphire laser pulses into 2 m-long high linear photonic crystal fibers, with an energy up to 5 nJ at a pulse repetition rate of 100 MHz and a central wavelength of 800 nm.

Cite this article

Download citation ▾
CHEN Wei, LI Jinyan, LI Shiyu, JIANG Zuowen, LI Haiqing, PENG Jinggang. High nonlinear photonic crystal fiber and its supercontinuum spectrum. Front. Optoelectron., 2008, 1(1-2): 75‒78 https://doi.org/10.1007/s12200-008-0004-6

References

1. Kuhlmey B T, McPhedran R C, de Sterke C M, et al.. Micro-structured optical fibers: where's theedge? Optics Express, 2002, 10(22): 1285–1290
2. Foster M, Gaeta A . Ultra-low threshold supercontinuumgeneration in sub-wavelength waveguides. Optics Express, 2004, 12(14): 3137–3143. doi:10.1364/OPEX.12.003137
3. Podlipensky A, Szarniak P, Joly N Y, et al.. Bound soliton pairs in photonic crystal fiber. Optics Express, 2007, 15(4): 1653–1662. doi:10.1364/OE.15.001653
4. Luan F, Skryabin D V, Yulin A V, et al.. Energy exchange between colliding solitons inphotonic crystal fibers. Optics Express, 2006, 14(21): 9844–9853. doi:10.1364/OE.14.009844
5. Zhang R, Teipel J, Giessen H . Theoretical design of a liquid-core photonic crystalfiber for supercontinuum generation. OpticsExpress, 2006, 14(15): 6800–6812. doi:10.1364/OE.14.006800
6. Saitoh K, Fujisawa T, Kirihara T, et al.. Approximate empirical relations for nonlinearphotonic crystal fibers. Optics Express, 2006, 14(14): 6572–6582. doi:10.1364/OE.14.006572
7. Takara H, Ohara T, Mori K, et al.. More than 1000 channel optical frequency chaingeneration from single supercontinuum source with 12.5 GHz channelspacing. Electronics Letters, 2000, 36(25): 2089–2090. doi:10.1049/el:20001461
8. Saitoh K, Koshiba M . Highly nonlinear dispersion-flattenedphotonic crystal fibers for supercontinuum generation in a telecommunicationwindow. Optics Express, 2004, 12(10): 2027–2032. doi:10.1364/OPEX.12.002027
9. Yamamoto T, Kubota H, Kawanishi S, et al.. Supercontinuum generation at 1.55 um in a dispersion-flattenedpolarization-maintaining photonic crystal fiber. Optics Express, 2003, 11(13): 1537–1540
10. Varshney S, Fujisawa T, Saitoh K, et al.. Novel design of inherently gain-flattened discretehighly nonlinear photonic crystal fiber Raman amplifier and dispersioncompensation using a single pump in C-band. Optics Express, 13(23): 9516–9526. doi:10.1364/OPEX.13.009516
11. Kudlinski A, George A K, Knight J C, et al.. Zero-dispersion wavelength decreasing photoniccrystal fibers for ultraviolet-extend supercontinuum generation. Optics Express, 2006, 14(12): 5715–5722. doi:10.1364/OE.14.005715
12. Omenetto F G, Wolchover N A, Wehner M R, et al.. Spectrally smooth supercontinuum for 350 nmto 3 μm in sub-centimeter lengths of soft-glass photonic crystalfibers. Optics Express, 2006, 14(11): 4928–4934. doi:10.1364/OE.14.004928
13. Kano H, Hamaguchi H . In-vivo multi-nonlinear opticalimaging of a living cell using a supercontinuum light source generatedfrom a photonic crystal fiber. Optics Express, 2006, 14(7): 2798–2804. doi:10.1364/OE.14.002798
14. Fu L, Jain A, Xie H, et al.. Nonlinear optical endoscopy based on a double-cladphotonic crystal fiber and a MEMS mirror. Optics Express, 2006, 14(3): 1027–1032. doi:10.1364/OE.14.001027
15. Hilligsøe K M, Andersen T V, Paulsen H N, et al.. Supercontinuum generation in a photonic crystalfiber with two zero dispersion wavelengths. Optics Express, 2004, 12(6): 1045–1054. doi:10.1364/OPEX.12.001045
16. Huttunen A, Törmä P . Effect of wavelength dependenceof non-linearity, gain, and dispersion in photonic crystal fiber amplifiers. Optics Express, 2005, 13(11): 4286–4295. doi:10.1364/OPEX.13.004286
17. Efimov A, Taylor A, Omenetto F G, et al.. Time-spectrally-resolved ultrafast nonlineardynamics in small-core photonic crystal fibers: Experiment and modelling. Optics Express, 2004, 12(26): 6498–6507. doi:10.1364/OPEX.12.006498
18. Zhang R, Teipel J, Giessen H . Theoretical design of a liquid-core photonic crystalfiber for supercontinuum generation. OpticsExpress, 2006, 14(15): 6800–6812. doi:10.1364/OE.14.006800
19. Genty G, Lehtonen M, Ludvigsen H, et al.. Enhanced bandwidth of supercontinuum generatedin micro-structured fibers. Optics Express, 2004, 12(15): 3471–3480. doi:10.1364/OPEX.12.003471
20. Ranka J K, Windeler R S, Stentz A J . Visible continuum generation in air-silica microstructureoptical fibers with anomalous dispersion at 800 nm. Optics Letters, 2000, 25(1): 25–27. doi:10.1364/OL.25.000025
21. Hu M L, Wang C Y, Song Y J, et al.. Mode-selective mapping and control of vectorialnonlinear-optical processes in multimode photonic crystal fibers. Optics Express, 2006, 14(3): 1189–1198. doi:10.1364/OE.14.001189
22. Chow K K, Shu C, Lin C, et al.. Extinction ratio improvement by pump-modulatedfour-wave mixing in a dispersion flattened nonlinear photonic crystalfiber. Optics Express, 2005, 13(22): 8900–8905. doi:10.1364/OPEX.13.008900
23. Saitoh K, Florous N, Koshiba M . Ultra flattened chromatic dispersion controllabilityusing a defected core photonic crystal fiber with low confinementlosses. Optics Express, 2005, 13(21): 8365–8371. doi:10.1364/OPEX.13.008365
24. Fuerbach A, Steinvurzel P, Bolger J, et al.. Nonlinear pulse propagation at zero dispersionwavelength in anti-resonant photonic crystal fibers. Optics Express, 2005, 13(8): 2977–2987. doi:10.1364/OPEX.13.002977
25. Dudley J, Coen S . Fundamental limits to few-cyclepulse generation from compression of supercontinuum spectra generatedin photonic crystal fiber. Optics Express, 2004, 12(11): 2423–2428. doi:10.1364/OPEX.12.002423
26. Zhang H, Yu S, Zhang J, et al.. Effect of frequency chirp on supercontinuumgeneration in photonic crystal fibers with two zero-dispersion wavelengths. Optics Express, 2007, 15(3): 1147–1154. doi:10.1364/OE.15.001147
27. Gorbach A V, Skryabin D V, Stone J M, et al.. Four-wave mixing of solitons with radiationand quasi-nondispersive wave packets at the short wavelength edgeof a supercontinuum. Optics Express, 2006, 14(21): 9854–9863. doi:10.1364/OE.14.009854
28. Räikkönen E, Genty G, Kimmelma O, et al.. Supercontinuum generation by nanosecond dual-wavelengthpumping in micro-structured optical fibers. Optics Express, 2006, 14(17): 7914–7923. doi:10.1364/OE.14.007914
29. Genty G, Ritari T, Ludvigsen H . Supercontinuum generation in large mode area micro-structuredfibers. Optics Express, 2005, 13(21): 8625–8633. doi:10.1364/OPEX.13.008625
30. Hu M L, Wang C Y, Li Y F, et al.. Tunable supercontinuum generation in a highindex-step photonic-crystal fiber with a comma-shaped core. Optics Express, 2006, 14(5): 1942–1950. doi:10.1364/OE.14.001942
AI Summary AI Mindmap
PDF(138 KB)

Accesses

Citations

Detail

Sections
Recommended

/