High nonlinear photonic crystal fiber and its
supercontinuum spectrum
CHEN Wei1, LI Jinyan2, LI Shiyu2, JIANG Zuowen2, LI Haiqing2, PENG Jinggang2
Author information+
1.Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology;National Key Laboratory for Next Generation Fiber Communication Technologies and Networks, Fiberhome Telecommunication Technologies Co Ltd; 2.National Key Laboratory for Next Generation Fiber Communication Technologies and Networks, Fiberhome Telecommunication Technologies Co Ltd;
Show less
History+
Published
05 Jun 2008
Issue Date
05 Jun 2008
Abstract
The high nonlinear photonic crystal fiber with pure silica core has been designed and fabricated, and the practical structure parameters of the fabricated fiber sample coincided precisely with the parameters we designed. The core diameter is 1.65 ?m; the air hole diameter is 4.75 ?m; the distance between the center of two holes is 5.35 ?m; the zero dispersion wavelength of the fiber is 1120 nm; the dispersion at 800 nm is -88 ps(nmkm)-1; and the nonlinear coefficient of this photonic crystal fiber is 112 (Wkm)-1. The broadly spanning supercontinuum emission with a smooth spectrum stretching from 450 to 1400 nm was attained by the injection of 30 fs Ti:sapphire laser pulses into 2 m-long high linear photonic crystal fibers, with an energy up to 5 nJ at a pulse repetition rate of 100 MHz and a central wavelength of 800 nm.
CHEN Wei, LI Jinyan, LI Shiyu, JIANG Zuowen, LI Haiqing, PENG Jinggang.
High nonlinear photonic crystal fiber and its
supercontinuum spectrum. Front. Optoelectron., 2008, 1(1-2): 75‒78 https://doi.org/10.1007/s12200-008-0004-6
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact us for subscripton.
References
1. Kuhlmey B T, McPhedran R C, de Sterke C M, et al.. Micro-structured optical fibers: where's theedge? Optics Express, 2002, 10(22): 1285–1290 2. Foster M, Gaeta A . Ultra-low threshold supercontinuumgeneration in sub-wavelength waveguides. Optics Express, 2004, 12(14): 3137–3143. doi:10.1364/OPEX.12.003137 3. Podlipensky A, Szarniak P, Joly N Y, et al.. Bound soliton pairs in photonic crystal fiber. Optics Express, 2007, 15(4): 1653–1662. doi:10.1364/OE.15.001653 4. Luan F, Skryabin D V, Yulin A V, et al.. Energy exchange between colliding solitons inphotonic crystal fibers. Optics Express, 2006, 14(21): 9844–9853. doi:10.1364/OE.14.009844 5. Zhang R, Teipel J, Giessen H . Theoretical design of a liquid-core photonic crystalfiber for supercontinuum generation. OpticsExpress, 2006, 14(15): 6800–6812. doi:10.1364/OE.14.006800 6. Saitoh K, Fujisawa T, Kirihara T, et al.. Approximate empirical relations for nonlinearphotonic crystal fibers. Optics Express, 2006, 14(14): 6572–6582. doi:10.1364/OE.14.006572 7. Takara H, Ohara T, Mori K, et al.. More than 1000 channel optical frequency chaingeneration from single supercontinuum source with 12.5 GHz channelspacing. Electronics Letters, 2000, 36(25): 2089–2090. doi:10.1049/el:20001461 8. Saitoh K, Koshiba M . Highly nonlinear dispersion-flattenedphotonic crystal fibers for supercontinuum generation in a telecommunicationwindow. Optics Express, 2004, 12(10): 2027–2032. doi:10.1364/OPEX.12.002027 9. Yamamoto T, Kubota H, Kawanishi S, et al.. Supercontinuum generation at 1.55 um in a dispersion-flattenedpolarization-maintaining photonic crystal fiber. Optics Express, 2003, 11(13): 1537–1540 10. Varshney S, Fujisawa T, Saitoh K, et al.. Novel design of inherently gain-flattened discretehighly nonlinear photonic crystal fiber Raman amplifier and dispersioncompensation using a single pump in C-band. Optics Express, 13(23): 9516–9526. doi:10.1364/OPEX.13.009516 11. Kudlinski A, George A K, Knight J C, et al.. Zero-dispersion wavelength decreasing photoniccrystal fibers for ultraviolet-extend supercontinuum generation. Optics Express, 2006, 14(12): 5715–5722. doi:10.1364/OE.14.005715 12. Omenetto F G, Wolchover N A, Wehner M R, et al.. Spectrally smooth supercontinuum for 350 nmto 3 μm in sub-centimeter lengths of soft-glass photonic crystalfibers. Optics Express, 2006, 14(11): 4928–4934. doi:10.1364/OE.14.004928 13. Kano H, Hamaguchi H . In-vivo multi-nonlinear opticalimaging of a living cell using a supercontinuum light source generatedfrom a photonic crystal fiber. Optics Express, 2006, 14(7): 2798–2804. doi:10.1364/OE.14.002798 14. Fu L, Jain A, Xie H, et al.. Nonlinear optical endoscopy based on a double-cladphotonic crystal fiber and a MEMS mirror. Optics Express, 2006, 14(3): 1027–1032. doi:10.1364/OE.14.001027 15. Hilligsøe K M, Andersen T V, Paulsen H N, et al.. Supercontinuum generation in a photonic crystalfiber with two zero dispersion wavelengths. Optics Express, 2004, 12(6): 1045–1054. doi:10.1364/OPEX.12.001045 16. Huttunen A, Törmä P . Effect of wavelength dependenceof non-linearity, gain, and dispersion in photonic crystal fiber amplifiers. Optics Express, 2005, 13(11): 4286–4295. doi:10.1364/OPEX.13.004286 17. Efimov A, Taylor A, Omenetto F G, et al.. Time-spectrally-resolved ultrafast nonlineardynamics in small-core photonic crystal fibers: Experiment and modelling. Optics Express, 2004, 12(26): 6498–6507. doi:10.1364/OPEX.12.006498 18. Zhang R, Teipel J, Giessen H . Theoretical design of a liquid-core photonic crystalfiber for supercontinuum generation. OpticsExpress, 2006, 14(15): 6800–6812. doi:10.1364/OE.14.006800 19. Genty G, Lehtonen M, Ludvigsen H, et al.. Enhanced bandwidth of supercontinuum generatedin micro-structured fibers. Optics Express, 2004, 12(15): 3471–3480. doi:10.1364/OPEX.12.003471 20. Ranka J K, Windeler R S, Stentz A J . Visible continuum generation in air-silica microstructureoptical fibers with anomalous dispersion at 800 nm. Optics Letters, 2000, 25(1): 25–27. doi:10.1364/OL.25.000025 21. Hu M L, Wang C Y, Song Y J, et al.. Mode-selective mapping and control of vectorialnonlinear-optical processes in multimode photonic crystal fibers. Optics Express, 2006, 14(3): 1189–1198. doi:10.1364/OE.14.001189 22. Chow K K, Shu C, Lin C, et al.. Extinction ratio improvement by pump-modulatedfour-wave mixing in a dispersion flattened nonlinear photonic crystalfiber. Optics Express, 2005, 13(22): 8900–8905. doi:10.1364/OPEX.13.008900 23. Saitoh K, Florous N, Koshiba M . Ultra flattened chromatic dispersion controllabilityusing a defected core photonic crystal fiber with low confinementlosses. Optics Express, 2005, 13(21): 8365–8371. doi:10.1364/OPEX.13.008365 24. Fuerbach A, Steinvurzel P, Bolger J, et al.. Nonlinear pulse propagation at zero dispersionwavelength in anti-resonant photonic crystal fibers. Optics Express, 2005, 13(8): 2977–2987. doi:10.1364/OPEX.13.002977 25. Dudley J, Coen S . Fundamental limits to few-cyclepulse generation from compression of supercontinuum spectra generatedin photonic crystal fiber. Optics Express, 2004, 12(11): 2423–2428. doi:10.1364/OPEX.12.002423 26. Zhang H, Yu S, Zhang J, et al.. Effect of frequency chirp on supercontinuumgeneration in photonic crystal fibers with two zero-dispersion wavelengths. Optics Express, 2007, 15(3): 1147–1154. doi:10.1364/OE.15.001147 27. Gorbach A V, Skryabin D V, Stone J M, et al.. Four-wave mixing of solitons with radiationand quasi-nondispersive wave packets at the short wavelength edgeof a supercontinuum. Optics Express, 2006, 14(21): 9854–9863. doi:10.1364/OE.14.009854 28. Räikkönen E, Genty G, Kimmelma O, et al.. Supercontinuum generation by nanosecond dual-wavelengthpumping in micro-structured optical fibers. Optics Express, 2006, 14(17): 7914–7923. doi:10.1364/OE.14.007914 29. Genty G, Ritari T, Ludvigsen H . Supercontinuum generation in large mode area micro-structuredfibers. Optics Express, 2005, 13(21): 8625–8633. doi:10.1364/OPEX.13.008625 30. Hu M L, Wang C Y, Li Y F, et al.. Tunable supercontinuum generation in a highindex-step photonic-crystal fiber with a comma-shaped core. Optics Express, 2006, 14(5): 1942–1950. doi:10.1364/OE.14.001942
AI Summary 中Eng×
Note: Please note that the content below is AI-generated. Frontiers Journals website shall not be held liable for any consequences associated with the use of this content.