MEMS-actuated terahertz metamaterials driven by phase-transition materials

  • Zhixiang Huang 1 ,
  • Weipeng Wu 2 ,
  • Eric Herrmann 1 ,
  • Ke Ma 1 ,
  • Zizwe A. Chase 3 ,
  • Thomas A. Searles 3 ,
  • M. Benjamin Jungfleisch 2 ,
  • Xi Wang , 1
Expand
  • 1. Department of Materials Science and Engineering, College of Engineering, University of Delaware, Newark, DE 19716, USA
  • 2. Department of Physics and Astronomy, College of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
  • 3. Department of Electrical and Computer Engineering, College of Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
wangxi@udel.edu

Received date: 28 Feb 2024

Accepted date: 15 Apr 2024

Copyright

2024 The Author(s) 2024

Abstract

The non-ionizing and penetrative characteristics of terahertz (THz) radiation have recently led to its adoption across a variety of applications. To effectively utilize THz radiation, modulators with precise control are imperative. While most recent THz modulators manipulate the amplitude, frequency, or phase of incident THz radiation, considerably less progress has been made toward THz polarization modulation. Conventional methods for polarization control suffer from high driving voltages, restricted modulation depth, and narrow band capabilities, which hinder device performance and broader applications. Consequently, an ideal THz modulator that offers high modulation depth along with ease of processing and operation is required. In this paper, we propose and realize a THz metamaterial comprised of microelectromechanical systems (MEMS) actuated by the phase-transition material vanadium dioxide (VO2). Simulation and experimental results of the three-dimensional metamaterials show that by leveraging the unique phase-transition attributes of VO2, our THz polarization modulator offers notable advancements over existing designs, including broad operation spectrum, high modulation depth, ease of fabrication, ease of operation condition, and continuous modulation capabilities. These enhanced features make the system a viable candidate for a range of THz applications, including telecommunications, imaging, and radar systems.

Cite this article

Zhixiang Huang , Weipeng Wu , Eric Herrmann , Ke Ma , Zizwe A. Chase , Thomas A. Searles , M. Benjamin Jungfleisch , Xi Wang . MEMS-actuated terahertz metamaterials driven by phase-transition materials[J]. Frontiers of Optoelectronics, 2024 , 17(2) : 13 . DOI: 10.1007/s12200-024-00116-4

1
International Telecommunication Union. General Secretariat: Radio regulations; additional radio regulations, resolutions and recommendations

2
Shibuya, T., Kawase, K.: 17-Terahertz applications in tomographic imaging and material spectroscopy: a review. In: Handbook of Terahertz Technology for Imaging, Sensing and Communications. Ed D. Saeedkia. Woodhead Publishing (2013)

DOI

3
Siegel, P.H.: Terahertz technology. IEEE Trans Microw Theory Tech 50(3), 910–928 (2002)

DOI

4
Slocum, D.M., Slingerland, E.J., Giles, R.H., Goyette, T.M.: Atmospheric absorption of terahertz radiation and water vapor continuum effects. J Quant Spectrosc Radiat Transf 127, 49–63 (2013)

DOI

5
Yamashita, M., Kawase, K., Otani, C., Kiwa, T., Tonouchi, M.: Imaging of large-scale integrated circuits using laser-terahertz emission microscopy. Opt Express 13(1), 115–120 (2005)

DOI

6
Federici, J.F., Schulkin, B., Huang, F., Gary, D., Barat, R., Oliveira, F., Zimdars, D.: THz imaging and sensing for security applications—explosives, weapons and drugs. Semicond Sci Technol 20(7), S266–S280 (2005)

DOI

7
Koenig, S., Lopez-Diaz, D., Antes, J., Boes, F., Henneberger, R., Leuther, A., Tessmann, A., Schmogrow, R., Hillerkuss, D., Palmer, R., Zwick, T., Koos, C., Freude, W., Ambacher, O., Leuthold, J., Kallfass, I.: Wireless sub-THz communication system with high data rate. Nat Photonics 7(12), 977–981 (2013)

DOI

8
Nagel, M., Först, M., Kurz, H.: THz biosensing devices: fundamentals and technology. J Phys Condens Matter 18(18), S601–S618 (2006)

DOI

9
Zhao, L., Hao, Y.H., Peng, R.Y.: Advances in the biological effects of terahertz wave radiation. Mil Med Res 1(1), 26 (2014)

DOI

10
Herrmann, E., Gao, H., Huang, Z., Sitaram, S.R., Ma, K., Wang, X.: Modulators for mid-infrared and terahertz light. J Appl Phys 128(14), 140903 (2020)

DOI

11
Chen, H.T., Padilla, W.J., Zide, J.M., Gossard, A.C., Taylor, A.J., Averitt, R.D.: Active terahertz metamaterial devices. Nature 444(7119), 597–600 (2006)

DOI

12
Shrekenhamer, D., Rout, S., Strikwerda, A.C., Bingham, C., Averitt, R.D., Sonkusale, S., Padilla, W.J.: High speed terahertz modulation from metamaterials with embedded high electron mobility transistors. Opt Express 19(10), 9968–9975 (2011)

DOI

13
Dutta-Gupta, S., Dabidian, N., Kholmanov, I., Belkin, M.A., Shvets, G.: Electrical tuning of the polarization state of light using graphene-integrated anisotropic metasurfaces. Philos Trans Royal Soc Math Phys Eng Sci 375(2090), 20160061 (2017)

DOI

14
Miao, Z., Wu, Q., Li, X., He, Q., Ding, K., An, Z., Zhang, Y., Zhou, L.: Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces. Phys Rev X 5(4), 041027 (2015)

DOI

15
Ju, L., Geng, B., Horng, J., Girit, C., Martin, M., Hao, Z., Bechtel, H.A., Liang, X., Zettl, A., Shen, Y.R., Wang, F.: Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6(10), 630–634 (2011)

DOI

16
Wu, Y., La-o-vorakiat, C., Qiu, X., Liu, J., Deorani, P., Banerjee, K., Son, J., Chen, Y., Chia, E.E.M., Yang, H.: Graphene terahertz modulators by ionic liquid gating. Adv Mater 27(11), 1874–1879 (2015)

DOI

17
Si, G., Zhao, Y., Leong, E.S.P., Liu, Y.J.: Liquid-crystal-enabled active plasmonics: a review. Materials (Basel) 7(2), 1296–1317 (2014)

DOI

18
Reuter, M., Vieweg, N., Fischer, B.M., Mikulicz, M., Koch, M., Garbat, K., Dąbrowski, R.: Highly birefringent, low-loss liquid crystals for terahertz applications. APL mater 1(1), 012107 (2013)

DOI

19
Buchnev, O., Wallauer, J., Walther, M., Kaczmarek, M., Zheludev, N.I., Fedotov, V.A.: Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial. Appl Phys Lett. 103(14), 141904 (2013)

DOI

20
Shrekenhamer, D., Chen, W.C., Padilla, W.J.: Liquid crystal tunable metamaterial absorber. Phys Rev Lett 110(17), 177403 (2013)

DOI

21
Wang, L., Lin, X.W., Hu, W., Shao, G.H., Chen, P., Liang, L.J., Jin, B.B., Wu, P.H., Qian, H., Lu, Y.N., Liang, X., Zheng, Z.G., Lu, Y.Q.: Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes. Light Sci Appl 4(2), e253 (2015)

DOI

22
Driscoll, T., Kim, H.T., Chae, B.G., Kim, B.J., Lee, Y.W., Jokerst, N.M., Palit, S., Smith, D.R., Di Ventra, M., Basov, D.N.: Memory metamaterials. Science 325(5947), 1518–1521 (2009)

DOI

23
Yahiaoui, R., Chase, Z.A., Kyaw, C., Seabron, E., Mathews, J., Searles, T.A.: Dynamically tunable single-layer VO2/metasurface based THz cross-polarization converter. J Phys D Appl Phys 54(23), 235101 (2021)

DOI

24
Nouman, M.T., Hwang, J.H., Faiyaz, M., Lee, K.J., Noh, D.Y., Jang, J.H.: Vanadium dioxide based frequency tunable metasurface filters for realizing reconfigurable terahertz optical phase and polarization control. Opt Express 26(10), 12922–12929 (2018)

DOI

25
Eyert, V.: The metal-insulator transitions of VO2: a band theoretical approach. Ann Phys 514(9), 650–704 (2002)

DOI

26
Hashemi, M.R.M., Yang, S.H., Wang, T., Sepúlveda, N., Jarrahi, M.: Electronically-controlled beam-steering through vanadium dioxide metasurfaces. Sci Rep 6(1), 35439 (2016)

DOI

27
Dong, K., Lou, S., Choe, H.S., Liu, K., You, Z., Yao, J., Wu, J.: Stress compensation for arbitrary curvature control in vanadium dioxide phase transition actuators. Appl Phys Lett 109(2), 023504 (2016)

DOI

28
Yang, Z., Ramanathan, S.: Breakthroughs in photonics 2014: phase change materials for photonics. Photonics J IEEE 7, 1–5 (2015)

DOI

29
Chae, B., Youn, D.H., Kim, H.T., Sunglyul, M., Kang, K.: Fabrication and electrical properties of pure VO2 phase films. J Korean Phys Soc 44, 884–888 (2003)

30
Kawakubo, T., Nakagawa, T.: Phase transition in VO2. J. Phys. Soc. Jpn 19(4), 517–519 (1964)

DOI

31
Cai, H., Chen, S., Zou, C., Huang, Q., Liu, Y., Hu, X., Fu, Z., Zhao, Y., He, H., Lu, Y.: Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves. Adv Opt Mater 6(14), 1800257 (2018)

DOI

32
Shu, F.Z., Yu, F.F., Peng, R.W., Zhu, Y.Y., Xiong, B., Fan, R.H., Wang, Z.H., Liu, Y., Wang, M.: Dynamic plasmonic color generation based on phase transition of vanadium dioxide. Adv Opt Mater 6(7), 1700939 (2018)

DOI

33
Shu, F.Z., Wang, J.N., Peng, R.W., Xiong, B., Fan, R.H., Gao, Y.J., Liu, Y., Qi, D.X., Wang, M.: Electrically driven tunable broadband polarization states via active metasurfaces based on Joule-heat-induced phase transition of vanadium dioxide. Laser Photonics Rev 15(10), 2100155 (2021)

DOI

34
Pitchappa, P., Kumar, A., Singh, R., Lee, C., Wang, N.: Terahertz MEMS metadevices. J Micromech Microeng 31(11), 113001 (2021)

DOI

35
Huang, Y., Okatani, T., Inomata, N., Kanamori, Y.: A reconfigurable ladder-shaped THz metamaterial integrated with a microelectromechanical cantilever array. Appl Phys Lett 122(5), 051705 (2023)

DOI

36
Fu, Y., Xu, X., Lin, Y.S.: Actively programmable MEMS-based racetrack-shaped terahertz metamaterial. J Appl Phys 131(11), 115301 (2022)

DOI

37
Silalahi, H.M., Chiang, W.F., Shih, Y.H., Wei, W.Y., Su, J.Y., Huang, C.Y.: Folding metamaterials with extremely strong electromagnetic resonance. Photon Res 10(9), 2215–2222 (2022)

DOI

38
Shih, K., Pitchappa, P., Manjappa, M., Ho, C.P., Singh, R., Yang, B., Singh, N., Lee, C.: Active MEMS metamaterials for THz bandwidth control. Appl Phys Lett 110(16), 161108 (2017)

DOI

39
Kan, T., Isozaki, A., Kanda, N., Nemoto, N., Konishi, K., Takahashi, H., Kuwata-Gonokami, M., Matsumoto, K., Shimoyama, I.: Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals. Nat Commun 6(1), 8422 (2015)

DOI

40
Fan, K., Padilla, W.J.: Dynamic electromagnetic metamaterials. Mater Today 18(1), 39–50 (2015)

DOI

41
Liu, M., Susli, M., Silva, D., Putrino, G., Kala, H., Fan, S., Cole, M., Faraone, L., Wallace, V.P., Padilla, W.J., Powell, D.A., Shadrivov, I.V., Martyniuk, M.: Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial. Microsyst Nanoeng 3(1), 17033 (2017)

DOI

42
Zheludev, N.I., Plum, E.: Reconfigurable nanomechanical photonic metamaterials. Nat Nanotechnol 11(1), 16–22 (2016)

DOI

43
Kan, T., Isozaki, A., Kanda, N., Nemoto, N., Konishi, K., Kuwata-Gonokami, M., Matsumoto, K., Shimoyama, I.: Spiral metamaterial for active tuning of optical activity. Appl Phys Lett 102(22), 221906 (2013)

DOI

44
Zhao, X., Schalch, J., Zhang, J., Seren, H.R., Duan, G., Averitt, R.D., Zhang, X.: Electromechanically tunable metasurface transmission waveplate at terahertz frequencies. Optica 5(3), 303–310 (2018)

DOI

45
Först, M., Manzoni, C., Kaiser, S., Tomioka, Y., Tokura, Y., Merlin, R., Cavalleri, A.: Nonlinear phononics as an ultrafast route to lattice control. Nat Phys 7(11), 854–856 (2011)

DOI

46
Fleischer, S., Zhou, Y., Field, R., Nelson, K.: Molecular orientation and alignment by intense single-cycle THz pulses. Phys Rev Lett 10(16), 163603 (2011)

DOI

47
Kong, D., Wu, X., Wang, B., Nie, T., Xiao, M., Pandey, C., Gao, Y., Wen, L., Zhao, W., Ruan, C., Miao, J., Li, Y., Wang, L.: Broadband spintronic terahertz emitter with magnetic-field manipulated polarizations. Adv Opt Mater 7(20), 1900487 (2019)

DOI

48
Wu, W., Lendinez, S., Kaffash, M.T., Schaller, R.D., Wen, H., Jungfleisch, M.B.: Controlling polarization of spintronic THz emitter by remanent magnetization texture. Appl Phys Lett 121(5), 052401 (2022)

DOI

49
Agarwal, P., Huang, L., Ter Lim, S., Singh, R.: Electric-field control of nonlinear THz spintronic emitters. Nat Commun 13(1), 4072 (2022)

DOI

50
Federici, J., Moeller, L.: Review of terahertz and subterahertz wireless communications. J Appl Phys 107(11), 111101 (2010)

DOI

51
Kim, T.T., Oh, S.S., Kim, H.D., Park, H.S., Hess, O., Min, B., Zhang, S.: Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials. Sci Adv 3(9), e1701377 (2017)

DOI

52
Qi, T., Shin, Y.H., Yeh, K.L., Nelson, K.A., Rappe, A.M.: Collective coherent control: synchronization of polarization in ferroelectric PbTiO3 by shaped THz fields. Phys Rev Lett 102(24), 247603 (2009)

DOI

53
Tinoco, I. Jr, Cantor, C.R.: Application of optical rotatory dispersion and circular dichroism to the study of biopolymers. In: Methods of Biochemical Analysis. (1970)

DOI

54
Song, Z., Zhang, L., Liu, Q.H.: High-efficiency broadband cross polarization converter for near-infrared light based on anisotropic plasmonic meta-surfaces. Plasmonics 11(1), 61–64 (2016)

DOI

55
Zhang, B., Lv, L., He, T., Chen, T., Zang, M., Zhong, L., Wang, X., Shen, J., Hou, Y.: Active terahertz device based on optically controlled organometal halide perovskite. Appl Phys Lett 107(9), 093301 (2015)

DOI

56
Guo, J., Kim, J.Y., Yang, S., Xu, J., Choi, Y.C., Stein, A., Murray, C.B., Kotov, N.A., Kagan, C.R.: Broadband circular polarizers via coupling in 3D plasmonic meta-atom arrays. ACS Photonics 8(5), 1286–1292 (2021)

DOI

57
Liu, Z., Du, H., Li, J., Lu, L., Li, Z.Y., Fang, N.X.: Nano-kirigami with giant optical chirality. Sci Adv 4(7), eaat4436 (2018)

DOI

58
Wang, Z., Jing, L., Yao, K., Yang, Y., Zheng, B., Soukoulis, C.M., Chen, H., Liu, Y.: Origami-based reconfigurable metamaterials for tunable chirality. Adv Mater Adv Mater 29(27), 1700412 (2017)

DOI

59
Landau J., Kearsley L.P., Pitaevskii E.M., Lifshitz J.B.: Sykes: Electrodynamics of Continuous Media (1984)

DOI

60
McConney, M.E., Kulkarni, D.D., Jiang, H., Bunning, T.J., Tsukruk, V.V.: A new twist on scanning thermal microscopy. Nano Lett 12(3), 1218–1223 (2012)

DOI

61
Zheng, L.S., Lu, M.S.C.: A large-displacement CMOS micromachined thermal actuator with comb electrodes for capacitive sensing. Sens Actuators A Phys. 136(2), 697–703 (2007)

DOI

62
King, T.G., Preston, M.E., Murphy, B.J.M., Cannell, D.S.: Piezoelectric ceramic actuators: a review of machinery applications. Precis Eng 12(3), 131–136 (1990)

DOI

63
Wu, C., Kahn, M., Moy, W.: Piezoelectric ceramics with functional gradients: a new application in material design. J Am Ceram Soc 79(3), 809–812 (1996)

DOI

64
Makino, E., Mineta, T., Mitsunaga, T., Kawashima, T., Shibata, T.: Sphincter actuator fabricated with PDMS/SMA bimorph cantilevers. Microelectron Eng 88(8), 2662–2665s (2011)

DOI

65
Krulevitch, P., Lee, A.P., Ramsey, P.B., Trevino, J.C., Hamilton, J., Northrup, M.A.: Thin film shape memory alloy microactuators. J Microelectromech Syst 5(4), 270–282 (1996)

DOI

66
Cavalleri, A., Tóth, C., Siders, C.W., Squier, J.A., Ráksi, F., Forget, P., Kieffer, J.C.: Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition. Phys Rev Lett 87(23), 237401 (2001)

DOI

67
Wang, X., Dong, K., Choe, H.S., Liu, H., Lou, S., Tom, K.B., Bechtel, H.A., You, Z., Wu, J., Yao, J.: Multifunctional microelectro-opto-mechanical platform based on phase-transition materials. Nano Lett 18(3), 1637–1643 (2018)

DOI

68
Liu, K., Cheng, C., Cheng, Z., Wang, K., Ramesh, R., Wu, J.: Giant-amplitude, high-work density microactuators with phase transition activated nanolayer bimorphs. Nano Lett 12(12), 6302–6308 (2012)

DOI

69
Nikishkov, G.P.: Curvature estimation for multilayer hinged structures with initial strains. J Appl Phys 94(8), 5333–5336 (2003)

DOI

70
Sepúlveda, N., Rúa, A., Cabrera, R., Fernández, F.: Young’s modulus of VO2 thin films as a function of temperature including insulator-to-metal transition regime. Appl Phys Lett 92(19), 191913 (2008)

DOI

71
Merle, B.: Mechanical Properties of Thin Films Studied by Bulge Testing (2013)

72
Guo, X.G., Zhou, Z.F., Sun, C., Li, W.H., Huang, Q.A.: A simple extraction method of young’s modulus for multilayer films in MEMS applications. Micromachines 8(7), 201 (2017)

DOI

73
Kanda, N., Konishi, K., Kuwata-Gonokami, M.: Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns. Opt Express 15(18), 11117–11125 (2017)

DOI

Outlines

/