MEMS-actuated terahertz metamaterials driven by phase-transition materials

Zhixiang Huang, Weipeng Wu, Eric Herrmann, Ke Ma, Zizwe A. Chase, Thomas A. Searles, M. Benjamin Jungfleisch, Xi Wang

PDF(5152 KB)
PDF(5152 KB)
Front. Optoelectron. ›› 2024, Vol. 17 ›› Issue (2) : 13. DOI: 10.1007/s12200-024-00116-4
RESEARCH ARTICLE

MEMS-actuated terahertz metamaterials driven by phase-transition materials

Author information +
History +

Abstract

The non-ionizing and penetrative characteristics of terahertz (THz) radiation have recently led to its adoption across a variety of applications. To effectively utilize THz radiation, modulators with precise control are imperative. While most recent THz modulators manipulate the amplitude, frequency, or phase of incident THz radiation, considerably less progress has been made toward THz polarization modulation. Conventional methods for polarization control suffer from high driving voltages, restricted modulation depth, and narrow band capabilities, which hinder device performance and broader applications. Consequently, an ideal THz modulator that offers high modulation depth along with ease of processing and operation is required. In this paper, we propose and realize a THz metamaterial comprised of microelectromechanical systems (MEMS) actuated by the phase-transition material vanadium dioxide (VO2). Simulation and experimental results of the three-dimensional metamaterials show that by leveraging the unique phase-transition attributes of VO2, our THz polarization modulator offers notable advancements over existing designs, including broad operation spectrum, high modulation depth, ease of fabrication, ease of operation condition, and continuous modulation capabilities. These enhanced features make the system a viable candidate for a range of THz applications, including telecommunications, imaging, and radar systems.

Graphical abstract

Keywords

Metamaterials / MEMS / THz / VO2 / Phase-transition material

Cite this article

Download citation ▾
Zhixiang Huang, Weipeng Wu, Eric Herrmann, Ke Ma, Zizwe A. Chase, Thomas A. Searles, M. Benjamin Jungfleisch, Xi Wang. MEMS-actuated terahertz metamaterials driven by phase-transition materials. Front. Optoelectron., 2024, 17(2): 13 https://doi.org/10.1007/s12200-024-00116-4

References

[1]
International Telecommunication Union. General Secretariat: Radio regulations; additional radio regulations, resolutions and recommendations
[2]
Shibuya, T., Kawase, K.: 17-Terahertz applications in tomographic imaging and material spectroscopy: a review. In: Handbook of Terahertz Technology for Imaging, Sensing and Communications. Ed D. Saeedkia. Woodhead Publishing (2013)
CrossRef Google scholar
[3]
Siegel, P.H.: Terahertz technology. IEEE Trans Microw Theory Tech 50(3), 910–928 (2002)
CrossRef Google scholar
[4]
Slocum, D.M., Slingerland, E.J., Giles, R.H., Goyette, T.M.: Atmospheric absorption of terahertz radiation and water vapor continuum effects. J Quant Spectrosc Radiat Transf 127, 49–63 (2013)
CrossRef Google scholar
[5]
Yamashita, M., Kawase, K., Otani, C., Kiwa, T., Tonouchi, M.: Imaging of large-scale integrated circuits using laser-terahertz emission microscopy. Opt Express 13(1), 115–120 (2005)
CrossRef Google scholar
[6]
Federici, J.F., Schulkin, B., Huang, F., Gary, D., Barat, R., Oliveira, F., Zimdars, D.: THz imaging and sensing for security applications—explosives, weapons and drugs. Semicond Sci Technol 20(7), S266–S280 (2005)
CrossRef Google scholar
[7]
Koenig, S., Lopez-Diaz, D., Antes, J., Boes, F., Henneberger, R., Leuther, A., Tessmann, A., Schmogrow, R., Hillerkuss, D., Palmer, R., Zwick, T., Koos, C., Freude, W., Ambacher, O., Leuthold, J., Kallfass, I.: Wireless sub-THz communication system with high data rate. Nat Photonics 7(12), 977–981 (2013)
CrossRef Google scholar
[8]
Nagel, M., Först, M., Kurz, H.: THz biosensing devices: fundamentals and technology. J Phys Condens Matter 18(18), S601–S618 (2006)
CrossRef Google scholar
[9]
Zhao, L., Hao, Y.H., Peng, R.Y.: Advances in the biological effects of terahertz wave radiation. Mil Med Res 1(1), 26 (2014)
CrossRef Google scholar
[10]
Herrmann, E., Gao, H., Huang, Z., Sitaram, S.R., Ma, K., Wang, X.: Modulators for mid-infrared and terahertz light. J Appl Phys 128(14), 140903 (2020)
CrossRef Google scholar
[11]
Chen, H.T., Padilla, W.J., Zide, J.M., Gossard, A.C., Taylor, A.J., Averitt, R.D.: Active terahertz metamaterial devices. Nature 444(7119), 597–600 (2006)
CrossRef Google scholar
[12]
Shrekenhamer, D., Rout, S., Strikwerda, A.C., Bingham, C., Averitt, R.D., Sonkusale, S., Padilla, W.J.: High speed terahertz modulation from metamaterials with embedded high electron mobility transistors. Opt Express 19(10), 9968–9975 (2011)
CrossRef Google scholar
[13]
Dutta-Gupta, S., Dabidian, N., Kholmanov, I., Belkin, M.A., Shvets, G.: Electrical tuning of the polarization state of light using graphene-integrated anisotropic metasurfaces. Philos Trans Royal Soc Math Phys Eng Sci 375(2090), 20160061 (2017)
CrossRef Google scholar
[14]
Miao, Z., Wu, Q., Li, X., He, Q., Ding, K., An, Z., Zhang, Y., Zhou, L.: Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces. Phys Rev X 5(4), 041027 (2015)
CrossRef Google scholar
[15]
Ju, L., Geng, B., Horng, J., Girit, C., Martin, M., Hao, Z., Bechtel, H.A., Liang, X., Zettl, A., Shen, Y.R., Wang, F.: Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6(10), 630–634 (2011)
CrossRef Google scholar
[16]
Wu, Y., La-o-vorakiat, C., Qiu, X., Liu, J., Deorani, P., Banerjee, K., Son, J., Chen, Y., Chia, E.E.M., Yang, H.: Graphene terahertz modulators by ionic liquid gating. Adv Mater 27(11), 1874–1879 (2015)
CrossRef Google scholar
[17]
Si, G., Zhao, Y., Leong, E.S.P., Liu, Y.J.: Liquid-crystal-enabled active plasmonics: a review. Materials (Basel) 7(2), 1296–1317 (2014)
CrossRef Google scholar
[18]
Reuter, M., Vieweg, N., Fischer, B.M., Mikulicz, M., Koch, M., Garbat, K., Dąbrowski, R.: Highly birefringent, low-loss liquid crystals for terahertz applications. APL mater 1(1), 012107 (2013)
CrossRef Google scholar
[19]
Buchnev, O., Wallauer, J., Walther, M., Kaczmarek, M., Zheludev, N.I., Fedotov, V.A.: Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial. Appl Phys Lett. 103(14), 141904 (2013)
CrossRef Google scholar
[20]
Shrekenhamer, D., Chen, W.C., Padilla, W.J.: Liquid crystal tunable metamaterial absorber. Phys Rev Lett 110(17), 177403 (2013)
CrossRef Google scholar
[21]
Wang, L., Lin, X.W., Hu, W., Shao, G.H., Chen, P., Liang, L.J., Jin, B.B., Wu, P.H., Qian, H., Lu, Y.N., Liang, X., Zheng, Z.G., Lu, Y.Q.: Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes. Light Sci Appl 4(2), e253 (2015)
CrossRef Google scholar
[22]
Driscoll, T., Kim, H.T., Chae, B.G., Kim, B.J., Lee, Y.W., Jokerst, N.M., Palit, S., Smith, D.R., Di Ventra, M., Basov, D.N.: Memory metamaterials. Science 325(5947), 1518–1521 (2009)
CrossRef Google scholar
[23]
Yahiaoui, R., Chase, Z.A., Kyaw, C., Seabron, E., Mathews, J., Searles, T.A.: Dynamically tunable single-layer VO2/metasurface based THz cross-polarization converter. J Phys D Appl Phys 54(23), 235101 (2021)
CrossRef Google scholar
[24]
Nouman, M.T., Hwang, J.H., Faiyaz, M., Lee, K.J., Noh, D.Y., Jang, J.H.: Vanadium dioxide based frequency tunable metasurface filters for realizing reconfigurable terahertz optical phase and polarization control. Opt Express 26(10), 12922–12929 (2018)
CrossRef Google scholar
[25]
Eyert, V.: The metal-insulator transitions of VO2: a band theoretical approach. Ann Phys 514(9), 650–704 (2002)
CrossRef Google scholar
[26]
Hashemi, M.R.M., Yang, S.H., Wang, T., Sepúlveda, N., Jarrahi, M.: Electronically-controlled beam-steering through vanadium dioxide metasurfaces. Sci Rep 6(1), 35439 (2016)
CrossRef Google scholar
[27]
Dong, K., Lou, S., Choe, H.S., Liu, K., You, Z., Yao, J., Wu, J.: Stress compensation for arbitrary curvature control in vanadium dioxide phase transition actuators. Appl Phys Lett 109(2), 023504 (2016)
CrossRef Google scholar
[28]
Yang, Z., Ramanathan, S.: Breakthroughs in photonics 2014: phase change materials for photonics. Photonics J IEEE 7, 1–5 (2015)
CrossRef Google scholar
[29]
Chae, B., Youn, D.H., Kim, H.T., Sunglyul, M., Kang, K.: Fabrication and electrical properties of pure VO2 phase films. J Korean Phys Soc 44, 884–888 (2003)
[30]
Kawakubo, T., Nakagawa, T.: Phase transition in VO2. J. Phys. Soc. Jpn 19(4), 517–519 (1964)
CrossRef Google scholar
[31]
Cai, H., Chen, S., Zou, C., Huang, Q., Liu, Y., Hu, X., Fu, Z., Zhao, Y., He, H., Lu, Y.: Multifunctional hybrid metasurfaces for dynamic tuning of terahertz waves. Adv Opt Mater 6(14), 1800257 (2018)
CrossRef Google scholar
[32]
Shu, F.Z., Yu, F.F., Peng, R.W., Zhu, Y.Y., Xiong, B., Fan, R.H., Wang, Z.H., Liu, Y., Wang, M.: Dynamic plasmonic color generation based on phase transition of vanadium dioxide. Adv Opt Mater 6(7), 1700939 (2018)
CrossRef Google scholar
[33]
Shu, F.Z., Wang, J.N., Peng, R.W., Xiong, B., Fan, R.H., Gao, Y.J., Liu, Y., Qi, D.X., Wang, M.: Electrically driven tunable broadband polarization states via active metasurfaces based on Joule-heat-induced phase transition of vanadium dioxide. Laser Photonics Rev 15(10), 2100155 (2021)
CrossRef Google scholar
[34]
Pitchappa, P., Kumar, A., Singh, R., Lee, C., Wang, N.: Terahertz MEMS metadevices. J Micromech Microeng 31(11), 113001 (2021)
CrossRef Google scholar
[35]
Huang, Y., Okatani, T., Inomata, N., Kanamori, Y.: A reconfigurable ladder-shaped THz metamaterial integrated with a microelectromechanical cantilever array. Appl Phys Lett 122(5), 051705 (2023)
CrossRef Google scholar
[36]
Fu, Y., Xu, X., Lin, Y.S.: Actively programmable MEMS-based racetrack-shaped terahertz metamaterial. J Appl Phys 131(11), 115301 (2022)
CrossRef Google scholar
[37]
Silalahi, H.M., Chiang, W.F., Shih, Y.H., Wei, W.Y., Su, J.Y., Huang, C.Y.: Folding metamaterials with extremely strong electromagnetic resonance. Photon Res 10(9), 2215–2222 (2022)
CrossRef Google scholar
[38]
Shih, K., Pitchappa, P., Manjappa, M., Ho, C.P., Singh, R., Yang, B., Singh, N., Lee, C.: Active MEMS metamaterials for THz bandwidth control. Appl Phys Lett 110(16), 161108 (2017)
CrossRef Google scholar
[39]
Kan, T., Isozaki, A., Kanda, N., Nemoto, N., Konishi, K., Takahashi, H., Kuwata-Gonokami, M., Matsumoto, K., Shimoyama, I.: Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals. Nat Commun 6(1), 8422 (2015)
CrossRef Google scholar
[40]
Fan, K., Padilla, W.J.: Dynamic electromagnetic metamaterials. Mater Today 18(1), 39–50 (2015)
CrossRef Google scholar
[41]
Liu, M., Susli, M., Silva, D., Putrino, G., Kala, H., Fan, S., Cole, M., Faraone, L., Wallace, V.P., Padilla, W.J., Powell, D.A., Shadrivov, I.V., Martyniuk, M.: Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial. Microsyst Nanoeng 3(1), 17033 (2017)
CrossRef Google scholar
[42]
Zheludev, N.I., Plum, E.: Reconfigurable nanomechanical photonic metamaterials. Nat Nanotechnol 11(1), 16–22 (2016)
CrossRef Google scholar
[43]
Kan, T., Isozaki, A., Kanda, N., Nemoto, N., Konishi, K., Kuwata-Gonokami, M., Matsumoto, K., Shimoyama, I.: Spiral metamaterial for active tuning of optical activity. Appl Phys Lett 102(22), 221906 (2013)
CrossRef Google scholar
[44]
Zhao, X., Schalch, J., Zhang, J., Seren, H.R., Duan, G., Averitt, R.D., Zhang, X.: Electromechanically tunable metasurface transmission waveplate at terahertz frequencies. Optica 5(3), 303–310 (2018)
CrossRef Google scholar
[45]
Först, M., Manzoni, C., Kaiser, S., Tomioka, Y., Tokura, Y., Merlin, R., Cavalleri, A.: Nonlinear phononics as an ultrafast route to lattice control. Nat Phys 7(11), 854–856 (2011)
CrossRef Google scholar
[46]
Fleischer, S., Zhou, Y., Field, R., Nelson, K.: Molecular orientation and alignment by intense single-cycle THz pulses. Phys Rev Lett 10(16), 163603 (2011)
CrossRef Google scholar
[47]
Kong, D., Wu, X., Wang, B., Nie, T., Xiao, M., Pandey, C., Gao, Y., Wen, L., Zhao, W., Ruan, C., Miao, J., Li, Y., Wang, L.: Broadband spintronic terahertz emitter with magnetic-field manipulated polarizations. Adv Opt Mater 7(20), 1900487 (2019)
CrossRef Google scholar
[48]
Wu, W., Lendinez, S., Kaffash, M.T., Schaller, R.D., Wen, H., Jungfleisch, M.B.: Controlling polarization of spintronic THz emitter by remanent magnetization texture. Appl Phys Lett 121(5), 052401 (2022)
CrossRef Google scholar
[49]
Agarwal, P., Huang, L., Ter Lim, S., Singh, R.: Electric-field control of nonlinear THz spintronic emitters. Nat Commun 13(1), 4072 (2022)
CrossRef Google scholar
[50]
Federici, J., Moeller, L.: Review of terahertz and subterahertz wireless communications. J Appl Phys 107(11), 111101 (2010)
CrossRef Google scholar
[51]
Kim, T.T., Oh, S.S., Kim, H.D., Park, H.S., Hess, O., Min, B., Zhang, S.: Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials. Sci Adv 3(9), e1701377 (2017)
CrossRef Google scholar
[52]
Qi, T., Shin, Y.H., Yeh, K.L., Nelson, K.A., Rappe, A.M.: Collective coherent control: synchronization of polarization in ferroelectric PbTiO3 by shaped THz fields. Phys Rev Lett 102(24), 247603 (2009)
CrossRef Google scholar
[53]
Tinoco, I. Jr, Cantor, C.R.: Application of optical rotatory dispersion and circular dichroism to the study of biopolymers. In: Methods of Biochemical Analysis. (1970)
CrossRef Google scholar
[54]
Song, Z., Zhang, L., Liu, Q.H.: High-efficiency broadband cross polarization converter for near-infrared light based on anisotropic plasmonic meta-surfaces. Plasmonics 11(1), 61–64 (2016)
CrossRef Google scholar
[55]
Zhang, B., Lv, L., He, T., Chen, T., Zang, M., Zhong, L., Wang, X., Shen, J., Hou, Y.: Active terahertz device based on optically controlled organometal halide perovskite. Appl Phys Lett 107(9), 093301 (2015)
CrossRef Google scholar
[56]
Guo, J., Kim, J.Y., Yang, S., Xu, J., Choi, Y.C., Stein, A., Murray, C.B., Kotov, N.A., Kagan, C.R.: Broadband circular polarizers via coupling in 3D plasmonic meta-atom arrays. ACS Photonics 8(5), 1286–1292 (2021)
CrossRef Google scholar
[57]
Liu, Z., Du, H., Li, J., Lu, L., Li, Z.Y., Fang, N.X.: Nano-kirigami with giant optical chirality. Sci Adv 4(7), eaat4436 (2018)
CrossRef Google scholar
[58]
Wang, Z., Jing, L., Yao, K., Yang, Y., Zheng, B., Soukoulis, C.M., Chen, H., Liu, Y.: Origami-based reconfigurable metamaterials for tunable chirality. Adv Mater Adv Mater 29(27), 1700412 (2017)
CrossRef Google scholar
[59]
Landau J., Kearsley L.P., Pitaevskii E.M., Lifshitz J.B.: Sykes: Electrodynamics of Continuous Media (1984)
CrossRef Google scholar
[60]
McConney, M.E., Kulkarni, D.D., Jiang, H., Bunning, T.J., Tsukruk, V.V.: A new twist on scanning thermal microscopy. Nano Lett 12(3), 1218–1223 (2012)
CrossRef Google scholar
[61]
Zheng, L.S., Lu, M.S.C.: A large-displacement CMOS micromachined thermal actuator with comb electrodes for capacitive sensing. Sens Actuators A Phys. 136(2), 697–703 (2007)
CrossRef Google scholar
[62]
King, T.G., Preston, M.E., Murphy, B.J.M., Cannell, D.S.: Piezoelectric ceramic actuators: a review of machinery applications. Precis Eng 12(3), 131–136 (1990)
CrossRef Google scholar
[63]
Wu, C., Kahn, M., Moy, W.: Piezoelectric ceramics with functional gradients: a new application in material design. J Am Ceram Soc 79(3), 809–812 (1996)
CrossRef Google scholar
[64]
Makino, E., Mineta, T., Mitsunaga, T., Kawashima, T., Shibata, T.: Sphincter actuator fabricated with PDMS/SMA bimorph cantilevers. Microelectron Eng 88(8), 2662–2665s (2011)
CrossRef Google scholar
[65]
Krulevitch, P., Lee, A.P., Ramsey, P.B., Trevino, J.C., Hamilton, J., Northrup, M.A.: Thin film shape memory alloy microactuators. J Microelectromech Syst 5(4), 270–282 (1996)
CrossRef Google scholar
[66]
Cavalleri, A., Tóth, C., Siders, C.W., Squier, J.A., Ráksi, F., Forget, P., Kieffer, J.C.: Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition. Phys Rev Lett 87(23), 237401 (2001)
CrossRef Google scholar
[67]
Wang, X., Dong, K., Choe, H.S., Liu, H., Lou, S., Tom, K.B., Bechtel, H.A., You, Z., Wu, J., Yao, J.: Multifunctional microelectro-opto-mechanical platform based on phase-transition materials. Nano Lett 18(3), 1637–1643 (2018)
CrossRef Google scholar
[68]
Liu, K., Cheng, C., Cheng, Z., Wang, K., Ramesh, R., Wu, J.: Giant-amplitude, high-work density microactuators with phase transition activated nanolayer bimorphs. Nano Lett 12(12), 6302–6308 (2012)
CrossRef Google scholar
[69]
Nikishkov, G.P.: Curvature estimation for multilayer hinged structures with initial strains. J Appl Phys 94(8), 5333–5336 (2003)
CrossRef Google scholar
[70]
Sepúlveda, N., Rúa, A., Cabrera, R., Fernández, F.: Young’s modulus of VO2 thin films as a function of temperature including insulator-to-metal transition regime. Appl Phys Lett 92(19), 191913 (2008)
CrossRef Google scholar
[71]
Merle, B.: Mechanical Properties of Thin Films Studied by Bulge Testing (2013)
[72]
Guo, X.G., Zhou, Z.F., Sun, C., Li, W.H., Huang, Q.A.: A simple extraction method of young’s modulus for multilayer films in MEMS applications. Micromachines 8(7), 201 (2017)
CrossRef Google scholar
[73]
Kanda, N., Konishi, K., Kuwata-Gonokami, M.: Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns. Opt Express 15(18), 11117–11125 (2017)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 The Author(s) 2024
AI Summary AI Mindmap
PDF(5152 KB)

Accesses

Citations

Detail

Sections
Recommended

/