Harnessing sub-comb dynamics in a graphene-sensitized microresonator for gas detection

  • Yupei Liang 1 ,
  • Mingyu Liu 1 ,
  • Fan Tang 1 ,
  • Yanhong Guo 1 ,
  • Hao Zhang 1 ,
  • Shihan Liu 1 ,
  • Yanping Yang 1 ,
  • Guangming Zhao 2 ,
  • Teng Tan , 1 ,
  • Baicheng Yao , 1,3
Expand
  • 1. Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education), University of Electronic Science and Technology of China, Chengdu 611731, China
  • 2. Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 3. Engineering Center of Integrated Optoelectronic & Radio Meta-Chips, University of Electronic Science and Technology, Chengdu 611731, China
taurus_tan@uestc.edu.cn
yaobaicheng@uestc.edu.cn

Received date: 24 Feb 2024

Accepted date: 01 Apr 2024

Copyright

2024 The Author(s) 2024

Abstract

Since their inception, frequency combs generated in microresonators, known as microcombs, have sparked significant scientific interests. Among the various applications leveraging microcombs, soliton microcombs are often preferred due to their inherent mode-locking capability. However, this choice introduces additional system complexity because an initialization process is required. Meanwhile, despite the theoretical understanding of the dynamics of other comb states, their practical potential, particularly in applications like sensing where simplicity is valued, remains largely untapped. Here, we demonstrate controllable generation of sub-combs that bypasses the need for accessing bistable regime. And in a graphene-sensitized microresonator, the sub-comb heterodynes produce stable, accurate microwave signals for high-precision gas detection. By exploring the formation dynamics of sub-combs, we achieved 2 MHz harmonic comb-to-comb beat notes with a signal-to-noise ratio (SNR) greater than 50 dB and phase noise as low as – 82 dBc/Hz at 1 MHz offset. The graphene sensitization on the intracavity probes results in exceptional frequency responsiveness to the adsorption of gas molecules on the graphene of microcavity surface, enabling detect limits down to the parts per billion (ppb) level. This synergy between graphene and sub-comb formation dynamics in a microcavity structure showcases the feasibility of utilizing microcombs in an incoherent state prior to soliton locking. It may mark a significant step toward the development of easy-to-operate, systemically simple, compact, and high-performance photonic sensors.

Cite this article

Yupei Liang , Mingyu Liu , Fan Tang , Yanhong Guo , Hao Zhang , Shihan Liu , Yanping Yang , Guangming Zhao , Teng Tan , Baicheng Yao . Harnessing sub-comb dynamics in a graphene-sensitized microresonator for gas detection[J]. Frontiers of Optoelectronics, 2024 , 17(2) : 12 . DOI: 10.1007/s12200-024-00115-5

1
Cundiff,S.T., Ye,J.: Colloquium: femtosecond optical frequency combs. Rev. Mod. Phys. 75(1), 325–342 (2003)

DOI

2
Takamoto,M., Hong,F.L., Higashi,R., Katori, H.: An optical lattice clock. Nature 435(7040), 321–324 (2005)

DOI

3
Picqué,N., Hänsch, T.W.: Frequency comb spectroscopy. Nat. Photonics 13(3), 146–157 (2019).

DOI

4
Li,J.T., Chang,B., Du,J.T., Tan, T., Geng,Y., Zhou,H., Liang,Y.P., Zhang,H., Yan, G.F., Ma,L.M., Ran,Z.L., Wang,Z.N., Yao,B.C., Rao, Y.J.: Coherently parallel fiber-optic distributed acoustic sensing using dual Kerr soliton microcombs. Sci. Adv. 10(3), eadf8666(2024)

DOI

5
Chang,L., Liu,S., Bowers,J.E.: Integrated optical frequency comb technologies. Nat. Photonics 16(2), 95–108 (2022)

DOI

6
Udem,T.: Optical Frequency Metrology. In: Reference Module in Materials Science and Materials Engineering, Elsevier (2016)

DOI

7
Geng,Y., Zhou,H., Han,X., Cui, W., Zhang,Q., Liu,B., Deng,G., Zhou,Q., Qiu, K.: Coherent optical communications using coherence-cloned Kerr soliton microcombs. Nat. Commun. 13(1), 1070(2022)

DOI

8
Li,Y., An,N., Lu,Z., Wang, Y., Chang,B., Tan,T., Guo,X., Xu,X., He, J., Xia,H., Wu,Z., Su,Y., Liu,Y., Rao, Y., Soavi,G., Yao,B.: Nonlinear co-generation of graphene plasmons for optoelectronic logic operations. Nat. Commun. 13(1), 3138(2022)

DOI

9
Xu,X., Tan,M., Corcoran,B., Wu, J., Boes,A., Nguyen,T.G., Chu,S.T., Little,B.E., Hicks, D.G., Morandotti,R., Mitchell,A., Moss,D.J.: 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589(7840), 44–51 (2021)

DOI

10
Qin,C., Du,J., Tan,T., Chang, B., Jia,K., Liang,Y., Wang,W., Guo,Y., Xia, H., Zhu,S., Rao,Y., Xie,Z., Yao,B.: Co-generation of orthogonal soliton pair in a monolithic fiber resonator with mechanical tunability. Laser Photonics Rev. 17(4), 2200662(2023)

DOI

11
Tan,T., Yuan,Z., Zhang,H., Yan, G., Zhou,S., An,N., Peng,B., Soavi,G., Rao, Y., Yao,B.: Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator. Nat. Commun. 12(1), 6716(2021)

DOI

12
Kippenberg,T.J., Gaeta,A.L., Lipson,M., Gorodetsky, M.L.: Dissipative Kerr solitons in optical microresonators. Science 361, 640 (2018)

DOI

13
Brasch,V., Geiselmann, M., Pfeiffer,M.H.P., Kippenberg,T.J.: Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state. Opt. Express 24(25), 29312–29320 (2016)

DOI

14
Zhou,H., Geng,Y., Cui,W., Huang, S.W., Zhou,Q., Qiu,K., Wei Wong, C.: Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci. Appl. 8(1), 50(2019)

DOI

15
Qin,C., Jia,K., Li,Q., Tan, T., Wang,X., Guo,Y., Huang,S.W., Liu,Y., Zhu, S., Xie,Z., Rao,Y., Yao,B.: Electrically controllable laser frequency combs in graphene-fibre microresonators. Light Sci. Appl. 9(1), 185(2020)

DOI

16
Hansson,T., Modotto, D., Wabnitz,S.: Dynamics of the modulational instability in microresonator frequency combs. Phys. Rev. A 88(2), 023819(2013)

DOI

17
Chen,R., Shu,H., Shen,B., Chang, L., Xie,W., Liao,W., Tao,Z., Bowers,J.E., Wang, X.: Breaking the temporal and frequency congestion of LiDAR by parallel chaos. Nat. Photonics 17(4), 306–314 (2023)

DOI

18
Guo,Y., Li,Z., An,N., Guo, Y., Wang,Y., Yuan,Y., Zhang,H., Tan,T., Wu, C., Peng,B., Soavi,G., Rao,Y., Yao,B.: A monolithic graphene-functionalized microlaser for multispecies gas detection. Adv. Mater. 34(51), e2207777(2022)

DOI

19
Zhang,H., Tan,T., Chen,H.J., Yu, Y., Wang,W., Chang,B., Liang,Y., Guo,Y., Zhou, H., Xia,H., Gong,Q., Wong,C.W., Rao,Y., Xiao, Y.F., Yao,B.: Soliton microcombs multiplexing using intracavity-stimulated brillouin lasers. Phys. Rev. Lett. 130(15), 153802(2023)

DOI

20
An,N., Tan,T., Peng,Z., Qin, C., Yuan,Z., Bi,L., Liao,C., Wang,Y., Rao, Y., Soavi,G., Yao,B.: Electrically tunable four-wave-mixing in graphene heterogeneous fiber for individual gas molecule detection. Nano Lett. 20(9), 6473–6480 (2020)

DOI

21
Tan,T., Jiang,X., Wang,C., Yao, B., Zhang,H.: 2D material optoelectronics for information functional device applications: status and challenges. Adv. Sci. (Weinh.) 7(11), 2000058(2020)

DOI

22
Torres-Company,V., Castelló-Lurbe, D., Silvestre,E.: Comparative analysis of spectral coherence in microresonator frequency combs. Opt. Express 22(4), 4678–4691 (2014)

DOI

23
Agha,I.H., Okawachi, Y., Gaeta,A.L.: Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres. Opt. Express 17(18), 16209–16215 (2009)

DOI

24
Vinod,A.K., Huang,S.W., Yang,J., Yu, M., Kwong,D.L., Wong,C.W.: Frequency microcomb stabilization via dual-microwave control. Commun. Phys. 4(1), 81(2021)

DOI

25
Del’Haye,P., Beha, K., Papp,S.B., Diddams,S.A.: Self-injection locking and phase-locked states in microresonator-based optical frequency combs. Phys. Rev. Lett. 112(4), 043905(2014)

DOI

26
Herr,T., Hartinger, K., Riemensberger,J., Wang,C.Y., Gavartin, E., Holzwarth,R., Gorodetsky,M.L., Kippenberg, T.J.: Universal formation dynamics and noise of Kerr-frequency combs in micro-resonators. Nat. Photonics 6(7), 480–487 (2012)

DOI

27
Li,J., Lee,H., Chen,T., Vahala, K.J.: Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs. Phys. Rev. Lett. 109(23), 233901(2012)

DOI

28
Wang,Y., Li,Y., Li,Y., Zhang, H., Liu,Z., Guo,Y., Wang,Z., He,J., Guo, X., Wang,Y., Yao,B.: Noise canceled graphene-micro-cavity fiber laser sensor for ultrasensitive gas detection. Photon. Res. 11(8), A1(2023)

DOI

29
Mikhailov,S.A., Ziegler, K.: New electromagnetic mode in graphene. Phys. Rev. Lett. 99(1), 016803(2007)

DOI

30
Yao,B., Huang,S.W., Liu,Y., Vinod, A.K., Choi,C., Hoff,M., Li,Y., Yu,M., Feng, Z., Kwong,D.L., Huang,Y., Rao,Y., Duan,X., Wong, C.W.: Gate-tunable frequency combs in graphene-nitride microresonators. Nature 558(7710), 410–414 (2018)

DOI

31
Lugiato,L.A., Lefever, R.: Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58(21), 2209–2211 (1987)

DOI

32
Fujii,S., Kato,T., Suzuki,R., Hori, A., Tanabe,T.: Transition between Kerr comb and stimulated Raman comb in a silica whispering gallery mode microcavity. J. Opt. Soc. Am. B 35(1), 100(2018)

DOI

33
Liu,T., Sun,S., Gao,Y., Wang, S., Chu,Y., Guo,H.: Optical microcombs in whispering gallery mode crystalline resonators with dispersive intermode interactions. Photon. Res. 10(12), 2866(2022)

DOI

34
Savchenkov,A.A., Matsko, A.B., Ilchenko,V.S., Maleki,L.: Optical resonators with ten million finesse. Opt. Express 15(11), 6768–6773 (2007)

DOI

35
Huang,S.W., Yang,J., Yu,M., McGuyer, B.H., Kwong,D.L., Zelevinsky,T., Wong,C.W.: A broadband chip-scale optical frequency synthesizer at 2.7 × 10-16 relative uncertainty. Sci. Adv. 2(4), e1501489(2016)

DOI

Outlines

/