Harnessing sub-comb dynamics in a graphene-sensitized microresonator for gas detection
Received date: 24 Feb 2024
Accepted date: 01 Apr 2024
Copyright
Since their inception, frequency combs generated in microresonators, known as microcombs, have sparked significant scientific interests. Among the various applications leveraging microcombs, soliton microcombs are often preferred due to their inherent mode-locking capability. However, this choice introduces additional system complexity because an initialization process is required. Meanwhile, despite the theoretical understanding of the dynamics of other comb states, their practical potential, particularly in applications like sensing where simplicity is valued, remains largely untapped. Here, we demonstrate controllable generation of sub-combs that bypasses the need for accessing bistable regime. And in a graphene-sensitized microresonator, the sub-comb heterodynes produce stable, accurate microwave signals for high-precision gas detection. By exploring the formation dynamics of sub-combs, we achieved 2 MHz harmonic comb-to-comb beat notes with a signal-to-noise ratio (SNR) greater than 50 dB and phase noise as low as – 82 dBc/Hz at 1 MHz offset. The graphene sensitization on the intracavity probes results in exceptional frequency responsiveness to the adsorption of gas molecules on the graphene of microcavity surface, enabling detect limits down to the parts per billion (ppb) level. This synergy between graphene and sub-comb formation dynamics in a microcavity structure showcases the feasibility of utilizing microcombs in an incoherent state prior to soliton locking. It may mark a significant step toward the development of easy-to-operate, systemically simple, compact, and high-performance photonic sensors.
Key words: Microresonator; Optical frequency comb; Graphene; Gas sensing
Yupei Liang , Mingyu Liu , Fan Tang , Yanhong Guo , Hao Zhang , Shihan Liu , Yanping Yang , Guangming Zhao , Teng Tan , Baicheng Yao . Harnessing sub-comb dynamics in a graphene-sensitized microresonator for gas detection[J]. Frontiers of Optoelectronics, 2024 , 17(2) : 12 . DOI: 10.1007/s12200-024-00115-5
1 |
Cundiff,S.T., Ye,J.: Colloquium: femtosecond optical frequency combs. Rev. Mod. Phys. 75(1), 325–342 (2003)
|
2 |
Takamoto,M., Hong,F.L., Higashi,R., Katori, H.: An optical lattice clock. Nature 435(7040), 321–324 (2005)
|
3 |
Picqué,N., Hänsch, T.W.: Frequency comb spectroscopy. Nat. Photonics 13(3), 146–157 (2019).
|
4 |
Li,J.T., Chang,B., Du,J.T., Tan, T., Geng,Y., Zhou,H., Liang,Y.P., Zhang,H., Yan, G.F., Ma,L.M., Ran,Z.L., Wang,Z.N., Yao,B.C., Rao, Y.J.: Coherently parallel fiber-optic distributed acoustic sensing using dual Kerr soliton microcombs. Sci. Adv. 10(3), eadf8666(2024)
|
5 |
Chang,L., Liu,S., Bowers,J.E.: Integrated optical frequency comb technologies. Nat. Photonics 16(2), 95–108 (2022)
|
6 |
Udem,T.: Optical Frequency Metrology. In: Reference Module in Materials Science and Materials Engineering, Elsevier (2016)
|
7 |
Geng,Y., Zhou,H., Han,X., Cui, W., Zhang,Q., Liu,B., Deng,G., Zhou,Q., Qiu, K.: Coherent optical communications using coherence-cloned Kerr soliton microcombs. Nat. Commun. 13(1), 1070(2022)
|
8 |
Li,Y., An,N., Lu,Z., Wang, Y., Chang,B., Tan,T., Guo,X., Xu,X., He, J., Xia,H., Wu,Z., Su,Y., Liu,Y., Rao, Y., Soavi,G., Yao,B.: Nonlinear co-generation of graphene plasmons for optoelectronic logic operations. Nat. Commun. 13(1), 3138(2022)
|
9 |
Xu,X., Tan,M., Corcoran,B., Wu, J., Boes,A., Nguyen,T.G., Chu,S.T., Little,B.E., Hicks, D.G., Morandotti,R., Mitchell,A., Moss,D.J.: 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589(7840), 44–51 (2021)
|
10 |
Qin,C., Du,J., Tan,T., Chang, B., Jia,K., Liang,Y., Wang,W., Guo,Y., Xia, H., Zhu,S., Rao,Y., Xie,Z., Yao,B.: Co-generation of orthogonal soliton pair in a monolithic fiber resonator with mechanical tunability. Laser Photonics Rev. 17(4), 2200662(2023)
|
11 |
Tan,T., Yuan,Z., Zhang,H., Yan, G., Zhou,S., An,N., Peng,B., Soavi,G., Rao, Y., Yao,B.: Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator. Nat. Commun. 12(1), 6716(2021)
|
12 |
Kippenberg,T.J., Gaeta,A.L., Lipson,M., Gorodetsky, M.L.: Dissipative Kerr solitons in optical microresonators. Science 361, 640 (2018)
|
13 |
Brasch,V., Geiselmann, M., Pfeiffer,M.H.P., Kippenberg,T.J.: Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state. Opt. Express 24(25), 29312–29320 (2016)
|
14 |
Zhou,H., Geng,Y., Cui,W., Huang, S.W., Zhou,Q., Qiu,K., Wei Wong, C.: Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci. Appl. 8(1), 50(2019)
|
15 |
Qin,C., Jia,K., Li,Q., Tan, T., Wang,X., Guo,Y., Huang,S.W., Liu,Y., Zhu, S., Xie,Z., Rao,Y., Yao,B.: Electrically controllable laser frequency combs in graphene-fibre microresonators. Light Sci. Appl. 9(1), 185(2020)
|
16 |
Hansson,T., Modotto, D., Wabnitz,S.: Dynamics of the modulational instability in microresonator frequency combs. Phys. Rev. A 88(2), 023819(2013)
|
17 |
Chen,R., Shu,H., Shen,B., Chang, L., Xie,W., Liao,W., Tao,Z., Bowers,J.E., Wang, X.: Breaking the temporal and frequency congestion of LiDAR by parallel chaos. Nat. Photonics 17(4), 306–314 (2023)
|
18 |
Guo,Y., Li,Z., An,N., Guo, Y., Wang,Y., Yuan,Y., Zhang,H., Tan,T., Wu, C., Peng,B., Soavi,G., Rao,Y., Yao,B.: A monolithic graphene-functionalized microlaser for multispecies gas detection. Adv. Mater. 34(51), e2207777(2022)
|
19 |
Zhang,H., Tan,T., Chen,H.J., Yu, Y., Wang,W., Chang,B., Liang,Y., Guo,Y., Zhou, H., Xia,H., Gong,Q., Wong,C.W., Rao,Y., Xiao, Y.F., Yao,B.: Soliton microcombs multiplexing using intracavity-stimulated brillouin lasers. Phys. Rev. Lett. 130(15), 153802(2023)
|
20 |
An,N., Tan,T., Peng,Z., Qin, C., Yuan,Z., Bi,L., Liao,C., Wang,Y., Rao, Y., Soavi,G., Yao,B.: Electrically tunable four-wave-mixing in graphene heterogeneous fiber for individual gas molecule detection. Nano Lett. 20(9), 6473–6480 (2020)
|
21 |
Tan,T., Jiang,X., Wang,C., Yao, B., Zhang,H.: 2D material optoelectronics for information functional device applications: status and challenges. Adv. Sci. (Weinh.) 7(11), 2000058(2020)
|
22 |
Torres-Company,V., Castelló-Lurbe, D., Silvestre,E.: Comparative analysis of spectral coherence in microresonator frequency combs. Opt. Express 22(4), 4678–4691 (2014)
|
23 |
Agha,I.H., Okawachi, Y., Gaeta,A.L.: Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres. Opt. Express 17(18), 16209–16215 (2009)
|
24 |
Vinod,A.K., Huang,S.W., Yang,J., Yu, M., Kwong,D.L., Wong,C.W.: Frequency microcomb stabilization via dual-microwave control. Commun. Phys. 4(1), 81(2021)
|
25 |
Del’Haye,P., Beha, K., Papp,S.B., Diddams,S.A.: Self-injection locking and phase-locked states in microresonator-based optical frequency combs. Phys. Rev. Lett. 112(4), 043905(2014)
|
26 |
Herr,T., Hartinger, K., Riemensberger,J., Wang,C.Y., Gavartin, E., Holzwarth,R., Gorodetsky,M.L., Kippenberg, T.J.: Universal formation dynamics and noise of Kerr-frequency combs in micro-resonators. Nat. Photonics 6(7), 480–487 (2012)
|
27 |
Li,J., Lee,H., Chen,T., Vahala, K.J.: Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs. Phys. Rev. Lett. 109(23), 233901(2012)
|
28 |
Wang,Y., Li,Y., Li,Y., Zhang, H., Liu,Z., Guo,Y., Wang,Z., He,J., Guo, X., Wang,Y., Yao,B.: Noise canceled graphene-micro-cavity fiber laser sensor for ultrasensitive gas detection. Photon. Res. 11(8), A1(2023)
|
29 |
Mikhailov,S.A., Ziegler, K.: New electromagnetic mode in graphene. Phys. Rev. Lett. 99(1), 016803(2007)
|
30 |
Yao,B., Huang,S.W., Liu,Y., Vinod, A.K., Choi,C., Hoff,M., Li,Y., Yu,M., Feng, Z., Kwong,D.L., Huang,Y., Rao,Y., Duan,X., Wong, C.W.: Gate-tunable frequency combs in graphene-nitride microresonators. Nature 558(7710), 410–414 (2018)
|
31 |
Lugiato,L.A., Lefever, R.: Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58(21), 2209–2211 (1987)
|
32 |
Fujii,S., Kato,T., Suzuki,R., Hori, A., Tanabe,T.: Transition between Kerr comb and stimulated Raman comb in a silica whispering gallery mode microcavity. J. Opt. Soc. Am. B 35(1), 100(2018)
|
33 |
Liu,T., Sun,S., Gao,Y., Wang, S., Chu,Y., Guo,H.: Optical microcombs in whispering gallery mode crystalline resonators with dispersive intermode interactions. Photon. Res. 10(12), 2866(2022)
|
34 |
Savchenkov,A.A., Matsko, A.B., Ilchenko,V.S., Maleki,L.: Optical resonators with ten million finesse. Opt. Express 15(11), 6768–6773 (2007)
|
35 |
Huang,S.W., Yang,J., Yu,M., McGuyer, B.H., Kwong,D.L., Zelevinsky,T., Wong,C.W.: A broadband chip-scale optical frequency synthesizer at 2.7 × 10-16 relative uncertainty. Sci. Adv. 2(4), e1501489(2016)
|
/
〈 | 〉 |