Information-entropy enabled identifying topological photonic phase in real space

  • Rui Ma 1 ,
  • Qiuchen Yan , 1 ,
  • Yihao Luo 2 ,
  • Yandong Li 1 ,
  • Xingyuan Wang 3 ,
  • Cuicui Lu , 4 ,
  • Xiaoyong Hu , 1,5,6,7,8 ,
  • Qihuang Gong 1,5,6,7,8
Expand
  • 1. State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, China
  • 2. The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin 300457, China
  • 3. College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
  • 4. Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
  • 5. Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
  • 6. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 7. Hefei National Laboratory, Hefei 230088, China
  • 8. Beijing Academy of Quantum Information Sciences, Beijing 100193, China
cuicuilu@bit.edu.cn
xiaoyonghu@pku.edu.cn

Received date: 25 Jan 2024

Accepted date: 20 Mar 2024

Copyright

2024 The Author(s) 2024

Abstract

The topological photonics plays an important role in the fields of fundamental physics and photonic devices. The traditional method of designing topological system is based on the momentum space, which is not a direct and convenient way to grasp the topological properties, especially for the perturbative structures or coupled systems. Here, we propose an interdisciplinary approach to study the topological systems in real space through combining the information entropy and topological photonics. As a proof of concept, the Kagome model has been analyzed with information entropy. We reveal that the bandgap closing does not correspond to the topological edge state disappearing. This method can be used to identify the topological phase conveniently and directly, even the systems with perturbations or couplings. As a promotional validation, Su–Schrieffer–Heeger model and the valley-Hall photonic crystal have also been studied based on the information entropy method. This work provides a method to study topological photonic phase based on information theory, and brings inspiration to analyze the physical properties by taking advantage of interdisciplinarity.

Cite this article

Rui Ma , Qiuchen Yan , Yihao Luo , Yandong Li , Xingyuan Wang , Cuicui Lu , Xiaoyong Hu , Qihuang Gong . Information-entropy enabled identifying topological photonic phase in real space[J]. Frontiers of Optoelectronics, 2024 , 17(2) : 11 . DOI: 10.1007/s12200-024-00113-7

1
Wang, Z., Wang, X., Hu, Z., Bongiovanni, D., Jukić, D., Tang, L., Song, D., Morandotti, R., Chen, Z., Buljan, H.: Sub-symmetry-protected topological states. Nat. Phys. 19(7), 992–998 (2023)

DOI

2
Parto, M., Leefmans, C., Williams, J., Nori, F., Marandi, A.: Non-Abelian effects in dissipative photonic topological lattices. Nat. Commun. 14(1), 1440 (2023)

DOI

3
Li, Y.Z., Xu, S., Zhang, Z.J., Yang, Y.M., Xie, X.R., Ye, W.Z., Liu, F., Xue, H.R., Jing, L.Q., Wang, Z.J., Chen, Q.D., Sun, H.B., Li, E.P., Chen, H.S., Gao, F.: Polarization-orthogonal nondegenerate plasmonic higher-order topological states. Phys. Rev. Lett. 130(21), 213603 (2023)

DOI

4
El Hassan, A., Kunst, F.K., Moritz, A., Andler, G., Bergholtz, E.J., Bourennane, M.: Corner states of light in photonic waveguides. Nat. Photonics 13(10), 697–700 (2019)

DOI

5
Yan, Q., Cao, E., Sun, Q., Ao, Y.T., Hu, X.Y., Shi, X., Gong, Q.H., Misawa, H.: Near-field imaging and time-domain dynamics of photonic topological edge states in plasmonic nanochains. Nano Lett. 21(21), 9270–9278 (2021)

DOI

6
Cheng, Q.Q., Pan, Y.M., Wang, Q.J., Li, T., Zhu, S.N.: Topologically protected interface mode in plasmonic waveguide arrays. Laser Photonics Rev. 9(4), 392–398 (2015)

DOI

7
Harder, T.H., Egorov, O.A., Krause, C., Beierlein, J., Gagel, P., Emmerling, M., Schneider, C., Peschel, U., Höfling, S., Klembt, S.: Kagome flatbands for coherent exciton-polariton lasing. ACS Photonics 8(11), 3193–3200 (2021)

DOI

8
Zhong, H., Kartashov, Y.V., Szameit, A., Li, Y.D., Liu, C.L., Zhang, Y.Q.: Theory of topological corner state laser in Kagome waveguide arrays. APL Photonics 6(4), 040802 (2021)

DOI

9
Liu, P.F., Zeng, H.F., Czaplewski, D.A., Stern, N.P.: Low index contrast valley hall topological photonics for robust transport in the visible spectrum. ACS Photonics 9(3), 922–928 (2022)

DOI

10
Yu, Z., Lin, H., Zhou, R., Li, Z., Mao, Z., Peng, K., Liu, Y., Shi, X.: Topological valley crystals in a photonic Su–Schrieffer–Heeger (SSH) variant. J. Appl. Phys. 132(16), 163101 (2022)

DOI

11
Amrani, F., Osório, J.H., Delahaye, F., Giovanardi, F., Vincetti, L., Debord, B., Gérôme, F., Benabid, F.: Low-loss single-mode hybrid-lattice hollow-core photonic-crystal fibre. Light Sci. Appl. 10(1), 7 (2021)

DOI

12
Noh, J., Huang, S., Chen, K.P., Rechtsman, M.C.: Observation of photonic topological valley Hall edge states. Phys. Rev. Lett. 120(6), 063902 (2018)

DOI

13
Aidelsburger, M., Lohse, M., Schweizer, C., Atala, M., Barreiro, J.T., Nascimbène, S., Cooper, N.R., Bloch, I., Goldman, N.: Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nat. Phys. 11(2), 162–166 (2015)

DOI

14
Wintersperger, K., Braun, C., Ünal, F.N., Eckardt, A., Liberto, M.D., Goldman, N., Bloch, I., Aidelsburger, M.: Realization of an anomalous Floquet topological system with ultracold atoms. Nat. Phys. 16(10), 1058–1063 (2020)

DOI

15
Zhang, P.F., Shen, H.T., Zhai, H.: Machine learning topological invariants with neural networks. Phys. Rev. Lett. 120(6), 066401 (2018)

DOI

16
Lang, T.C., Essin, A.M., Gurarie, V., Wessel, S.: Z2 topological invariants in two dimensions from quantum Monte Carlo. Phys Rev B Condens Matter Mater Phys. 87(20), 205101 (2013)

DOI

17
Grusdt, F., Abanin, D., Demler, E.: Measuring Z2 topological invariants in optical lattices using interferometry. Phys. Rev. A 89(4), 043621 (2014)

DOI

18
Sun, Z., Zhou, H., Wang, C., Kumar, S., Geng, D., Yue, S., Han, X., Haraguchi, Y., Shimada, K., Cheng, P., Chen, L., Shi, Y., Wu, K., Meng, S., Feng, B.: Observation of topological flat bands in the Kagome semiconductor Nb3Cl8. Nano Lett. 22(11), 4596–4602 (2022)

DOI

19
Duan, S.S., You, J.Y., Gou, J., Chen, J., Huang, Y.L., Liu, M.Z., Sun, S., Wang, Y.H., Yu, X.J., Wang, L., Feng, Y.P., Sun, Y.Y., Wee, T.S., Chen, W.: Epitaxial growth of single-layer Kagome nanoflakes with topological band inversion. ACS Nano 16(12), 21079–21086 (2022)

DOI

20
Xiong, L.L., Liu, Y.F., Zhang, Y., Zheng, Y.X., Jiang, X.Y.: Topological properties of a two-dimensional photonic square lattice without C4 and Mx(y) symmetries. ACS Photonics 9(7), 2448–2454 (2022)

DOI

21
Chen, Y.F., Lan, Z.H., Zhu, J.: Second-order topological phases in C4V-symmetric photonic crystals beyond the two-dimensional Su-Schrieffer–Heeger model. Nanophotonics 11(7), 1345–1354 (2022)

DOI

22
Zhang, W.X., Xie, X., Hao, H.M., Dang, J.C., Xiao, S., Shi, S.S., Ni, H.Q., Niu, Z.C., Wang, C., Jin, K.J., Zhang, X.D., Xu, X.L.: Low-threshold topological nanolasers based on the second-order corner state. Light Sci. Appl. 9(1), 109 (2020)

DOI

23
Padavić, K., Hegde, S.S., DeGottardi, W., Vishveshwara, S.: Topological phases, edge modes, and the Hofstadter butterfly in coupled Su-Schrieffer-Heeger systems. Phys. Rev. B 98(2), 024205 (2018)

DOI

24
Wang, Y.H., Liu, W.J., Ji, Z.R., Modi, G., Hwang, M., Agarwal, R.: Coherent interactions in one-dimensional topological photonic systems and their applications in all-optical logic operation. Nano Lett. 20(12), 8796–8802 (2020)

DOI

25
Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

DOI

26
Machta, J.: Entropy, information, and computation. Am. J. Phys. 67(12), 1074–1077 (1999)

DOI

27
Di Crescenzo, A., Longobardi, M.: On cumulative entropies. J. Stat. Plan. Inference 139(12), 4072–4087 (2009)

DOI

28
Cui, T.J., Liu, S., Li, L.L.: Information entropy of coding metasurface. Light Sci. Appl. 5(11), e16172 (2016)

DOI

29
Zhang, Y.Q., Ren, B.Q., Li, Y.D., Ye, F.W.: Topological states in the super-SSH model. Opt. Express 29(26), 42827–42836 (2021)

DOI

Outlines

/