Information-entropy enabled identifying topological photonic phase in real space
Rui Ma, Qiuchen Yan, Yihao Luo, Yandong Li, Xingyuan Wang, Cuicui Lu, Xiaoyong Hu, Qihuang Gong
Information-entropy enabled identifying topological photonic phase in real space
The topological photonics plays an important role in the fields of fundamental physics and photonic devices. The traditional method of designing topological system is based on the momentum space, which is not a direct and convenient way to grasp the topological properties, especially for the perturbative structures or coupled systems. Here, we propose an interdisciplinary approach to study the topological systems in real space through combining the information entropy and topological photonics. As a proof of concept, the Kagome model has been analyzed with information entropy. We reveal that the bandgap closing does not correspond to the topological edge state disappearing. This method can be used to identify the topological phase conveniently and directly, even the systems with perturbations or couplings. As a promotional validation, Su–Schrieffer–Heeger model and the valley-Hall photonic crystal have also been studied based on the information entropy method. This work provides a method to study topological photonic phase based on information theory, and brings inspiration to analyze the physical properties by taking advantage of interdisciplinarity.
Information entropy / Kagome model / Topological photonic phase
[1] |
Wang, Z., Wang, X., Hu, Z., Bongiovanni, D., Jukić, D., Tang, L., Song, D., Morandotti, R., Chen, Z., Buljan, H.: Sub-symmetry-protected topological states. Nat. Phys. 19(7), 992–998 (2023)
CrossRef
Google scholar
|
[2] |
Parto, M., Leefmans, C., Williams, J., Nori, F., Marandi, A.: Non-Abelian effects in dissipative photonic topological lattices. Nat. Commun. 14(1), 1440 (2023)
CrossRef
Google scholar
|
[3] |
Li, Y.Z., Xu, S., Zhang, Z.J., Yang, Y.M., Xie, X.R., Ye, W.Z., Liu, F., Xue, H.R., Jing, L.Q., Wang, Z.J., Chen, Q.D., Sun, H.B., Li, E.P., Chen, H.S., Gao, F.: Polarization-orthogonal nondegenerate plasmonic higher-order topological states. Phys. Rev. Lett. 130(21), 213603 (2023)
CrossRef
Google scholar
|
[4] |
El Hassan, A., Kunst, F.K., Moritz, A., Andler, G., Bergholtz, E.J., Bourennane, M.: Corner states of light in photonic waveguides. Nat. Photonics 13(10), 697–700 (2019)
CrossRef
Google scholar
|
[5] |
Yan, Q., Cao, E., Sun, Q., Ao, Y.T., Hu, X.Y., Shi, X., Gong, Q.H., Misawa, H.: Near-field imaging and time-domain dynamics of photonic topological edge states in plasmonic nanochains. Nano Lett. 21(21), 9270–9278 (2021)
CrossRef
Google scholar
|
[6] |
Cheng, Q.Q., Pan, Y.M., Wang, Q.J., Li, T., Zhu, S.N.: Topologically protected interface mode in plasmonic waveguide arrays. Laser Photonics Rev. 9(4), 392–398 (2015)
CrossRef
Google scholar
|
[7] |
Harder, T.H., Egorov, O.A., Krause, C., Beierlein, J., Gagel, P., Emmerling, M., Schneider, C., Peschel, U., Höfling, S., Klembt, S.: Kagome flatbands for coherent exciton-polariton lasing. ACS Photonics 8(11), 3193–3200 (2021)
CrossRef
Google scholar
|
[8] |
Zhong, H., Kartashov, Y.V., Szameit, A., Li, Y.D., Liu, C.L., Zhang, Y.Q.: Theory of topological corner state laser in Kagome waveguide arrays. APL Photonics 6(4), 040802 (2021)
CrossRef
Google scholar
|
[9] |
Liu, P.F., Zeng, H.F., Czaplewski, D.A., Stern, N.P.: Low index contrast valley hall topological photonics for robust transport in the visible spectrum. ACS Photonics 9(3), 922–928 (2022)
CrossRef
Google scholar
|
[10] |
Yu, Z., Lin, H., Zhou, R., Li, Z., Mao, Z., Peng, K., Liu, Y., Shi, X.: Topological valley crystals in a photonic Su–Schrieffer–Heeger (SSH) variant. J. Appl. Phys. 132(16), 163101 (2022)
CrossRef
Google scholar
|
[11] |
Amrani, F., Osório, J.H., Delahaye, F., Giovanardi, F., Vincetti, L., Debord, B., Gérôme, F., Benabid, F.: Low-loss single-mode hybrid-lattice hollow-core photonic-crystal fibre. Light Sci. Appl. 10(1), 7 (2021)
CrossRef
Google scholar
|
[12] |
Noh, J., Huang, S., Chen, K.P., Rechtsman, M.C.: Observation of photonic topological valley Hall edge states. Phys. Rev. Lett. 120(6), 063902 (2018)
CrossRef
Google scholar
|
[13] |
Aidelsburger, M., Lohse, M., Schweizer, C., Atala, M., Barreiro, J.T., Nascimbène, S., Cooper, N.R., Bloch, I., Goldman, N.: Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nat. Phys. 11(2), 162–166 (2015)
CrossRef
Google scholar
|
[14] |
Wintersperger, K., Braun, C., Ünal, F.N., Eckardt, A., Liberto, M.D., Goldman, N., Bloch, I., Aidelsburger, M.: Realization of an anomalous Floquet topological system with ultracold atoms. Nat. Phys. 16(10), 1058–1063 (2020)
CrossRef
Google scholar
|
[15] |
Zhang, P.F., Shen, H.T., Zhai, H.: Machine learning topological invariants with neural networks. Phys. Rev. Lett. 120(6), 066401 (2018)
CrossRef
Google scholar
|
[16] |
Lang, T.C., Essin, A.M., Gurarie, V., Wessel, S.: Z2 topological invariants in two dimensions from quantum Monte Carlo. Phys Rev B Condens Matter Mater Phys. 87(20), 205101 (2013)
CrossRef
Google scholar
|
[17] |
Grusdt, F., Abanin, D., Demler, E.: Measuring Z2 topological invariants in optical lattices using interferometry. Phys. Rev. A 89(4), 043621 (2014)
CrossRef
Google scholar
|
[18] |
Sun, Z., Zhou, H., Wang, C., Kumar, S., Geng, D., Yue, S., Han, X., Haraguchi, Y., Shimada, K., Cheng, P., Chen, L., Shi, Y., Wu, K., Meng, S., Feng, B.: Observation of topological flat bands in the Kagome semiconductor Nb3Cl8. Nano Lett. 22(11), 4596–4602 (2022)
CrossRef
Google scholar
|
[19] |
Duan, S.S., You, J.Y., Gou, J., Chen, J., Huang, Y.L., Liu, M.Z., Sun, S., Wang, Y.H., Yu, X.J., Wang, L., Feng, Y.P., Sun, Y.Y., Wee, T.S., Chen, W.: Epitaxial growth of single-layer Kagome nanoflakes with topological band inversion. ACS Nano 16(12), 21079–21086 (2022)
CrossRef
Google scholar
|
[20] |
Xiong, L.L., Liu, Y.F., Zhang, Y., Zheng, Y.X., Jiang, X.Y.: Topological properties of a two-dimensional photonic square lattice without C4 and Mx(y) symmetries. ACS Photonics 9(7), 2448–2454 (2022)
CrossRef
Google scholar
|
[21] |
Chen, Y.F., Lan, Z.H., Zhu, J.: Second-order topological phases in C4V-symmetric photonic crystals beyond the two-dimensional Su-Schrieffer–Heeger model. Nanophotonics 11(7), 1345–1354 (2022)
CrossRef
Google scholar
|
[22] |
Zhang, W.X., Xie, X., Hao, H.M., Dang, J.C., Xiao, S., Shi, S.S., Ni, H.Q., Niu, Z.C., Wang, C., Jin, K.J., Zhang, X.D., Xu, X.L.: Low-threshold topological nanolasers based on the second-order corner state. Light Sci. Appl. 9(1), 109 (2020)
CrossRef
Google scholar
|
[23] |
Padavić, K., Hegde, S.S., DeGottardi, W., Vishveshwara, S.: Topological phases, edge modes, and the Hofstadter butterfly in coupled Su-Schrieffer-Heeger systems. Phys. Rev. B 98(2), 024205 (2018)
CrossRef
Google scholar
|
[24] |
Wang, Y.H., Liu, W.J., Ji, Z.R., Modi, G., Hwang, M., Agarwal, R.: Coherent interactions in one-dimensional topological photonic systems and their applications in all-optical logic operation. Nano Lett. 20(12), 8796–8802 (2020)
CrossRef
Google scholar
|
[25] |
Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)
CrossRef
Google scholar
|
[26] |
Machta, J.: Entropy, information, and computation. Am. J. Phys. 67(12), 1074–1077 (1999)
CrossRef
Google scholar
|
[27] |
Di Crescenzo, A., Longobardi, M.: On cumulative entropies. J. Stat. Plan. Inference 139(12), 4072–4087 (2009)
CrossRef
Google scholar
|
[28] |
Cui, T.J., Liu, S., Li, L.L.: Information entropy of coding metasurface. Light Sci. Appl. 5(11), e16172 (2016)
CrossRef
Google scholar
|
[29] |
Zhang, Y.Q., Ren, B.Q., Li, Y.D., Ye, F.W.: Topological states in the super-SSH model. Opt. Express 29(26), 42827–42836 (2021)
CrossRef
Google scholar
|
/
〈 | 〉 |