Information-entropy enabled identifying topological photonic phase in real space

Rui Ma, Qiuchen Yan, Yihao Luo, Yandong Li, Xingyuan Wang, Cuicui Lu, Xiaoyong Hu, Qihuang Gong

PDF(1747 KB)
PDF(1747 KB)
Front. Optoelectron. ›› 2024, Vol. 17 ›› Issue (2) : 11. DOI: 10.1007/s12200-024-00113-7
RESEARCH ARTICLE

Information-entropy enabled identifying topological photonic phase in real space

Author information +
History +

Abstract

The topological photonics plays an important role in the fields of fundamental physics and photonic devices. The traditional method of designing topological system is based on the momentum space, which is not a direct and convenient way to grasp the topological properties, especially for the perturbative structures or coupled systems. Here, we propose an interdisciplinary approach to study the topological systems in real space through combining the information entropy and topological photonics. As a proof of concept, the Kagome model has been analyzed with information entropy. We reveal that the bandgap closing does not correspond to the topological edge state disappearing. This method can be used to identify the topological phase conveniently and directly, even the systems with perturbations or couplings. As a promotional validation, Su–Schrieffer–Heeger model and the valley-Hall photonic crystal have also been studied based on the information entropy method. This work provides a method to study topological photonic phase based on information theory, and brings inspiration to analyze the physical properties by taking advantage of interdisciplinarity.

Graphical abstract

Keywords

Information entropy / Kagome model / Topological photonic phase

Cite this article

Download citation ▾
Rui Ma, Qiuchen Yan, Yihao Luo, Yandong Li, Xingyuan Wang, Cuicui Lu, Xiaoyong Hu, Qihuang Gong. Information-entropy enabled identifying topological photonic phase in real space. Front. Optoelectron., 2024, 17(2): 11 https://doi.org/10.1007/s12200-024-00113-7

References

[1]
Wang, Z., Wang, X., Hu, Z., Bongiovanni, D., Jukić, D., Tang, L., Song, D., Morandotti, R., Chen, Z., Buljan, H.: Sub-symmetry-protected topological states. Nat. Phys. 19(7), 992–998 (2023)
CrossRef Google scholar
[2]
Parto, M., Leefmans, C., Williams, J., Nori, F., Marandi, A.: Non-Abelian effects in dissipative photonic topological lattices. Nat. Commun. 14(1), 1440 (2023)
CrossRef Google scholar
[3]
Li, Y.Z., Xu, S., Zhang, Z.J., Yang, Y.M., Xie, X.R., Ye, W.Z., Liu, F., Xue, H.R., Jing, L.Q., Wang, Z.J., Chen, Q.D., Sun, H.B., Li, E.P., Chen, H.S., Gao, F.: Polarization-orthogonal nondegenerate plasmonic higher-order topological states. Phys. Rev. Lett. 130(21), 213603 (2023)
CrossRef Google scholar
[4]
El Hassan, A., Kunst, F.K., Moritz, A., Andler, G., Bergholtz, E.J., Bourennane, M.: Corner states of light in photonic waveguides. Nat. Photonics 13(10), 697–700 (2019)
CrossRef Google scholar
[5]
Yan, Q., Cao, E., Sun, Q., Ao, Y.T., Hu, X.Y., Shi, X., Gong, Q.H., Misawa, H.: Near-field imaging and time-domain dynamics of photonic topological edge states in plasmonic nanochains. Nano Lett. 21(21), 9270–9278 (2021)
CrossRef Google scholar
[6]
Cheng, Q.Q., Pan, Y.M., Wang, Q.J., Li, T., Zhu, S.N.: Topologically protected interface mode in plasmonic waveguide arrays. Laser Photonics Rev. 9(4), 392–398 (2015)
CrossRef Google scholar
[7]
Harder, T.H., Egorov, O.A., Krause, C., Beierlein, J., Gagel, P., Emmerling, M., Schneider, C., Peschel, U., Höfling, S., Klembt, S.: Kagome flatbands for coherent exciton-polariton lasing. ACS Photonics 8(11), 3193–3200 (2021)
CrossRef Google scholar
[8]
Zhong, H., Kartashov, Y.V., Szameit, A., Li, Y.D., Liu, C.L., Zhang, Y.Q.: Theory of topological corner state laser in Kagome waveguide arrays. APL Photonics 6(4), 040802 (2021)
CrossRef Google scholar
[9]
Liu, P.F., Zeng, H.F., Czaplewski, D.A., Stern, N.P.: Low index contrast valley hall topological photonics for robust transport in the visible spectrum. ACS Photonics 9(3), 922–928 (2022)
CrossRef Google scholar
[10]
Yu, Z., Lin, H., Zhou, R., Li, Z., Mao, Z., Peng, K., Liu, Y., Shi, X.: Topological valley crystals in a photonic Su–Schrieffer–Heeger (SSH) variant. J. Appl. Phys. 132(16), 163101 (2022)
CrossRef Google scholar
[11]
Amrani, F., Osório, J.H., Delahaye, F., Giovanardi, F., Vincetti, L., Debord, B., Gérôme, F., Benabid, F.: Low-loss single-mode hybrid-lattice hollow-core photonic-crystal fibre. Light Sci. Appl. 10(1), 7 (2021)
CrossRef Google scholar
[12]
Noh, J., Huang, S., Chen, K.P., Rechtsman, M.C.: Observation of photonic topological valley Hall edge states. Phys. Rev. Lett. 120(6), 063902 (2018)
CrossRef Google scholar
[13]
Aidelsburger, M., Lohse, M., Schweizer, C., Atala, M., Barreiro, J.T., Nascimbène, S., Cooper, N.R., Bloch, I., Goldman, N.: Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nat. Phys. 11(2), 162–166 (2015)
CrossRef Google scholar
[14]
Wintersperger, K., Braun, C., Ünal, F.N., Eckardt, A., Liberto, M.D., Goldman, N., Bloch, I., Aidelsburger, M.: Realization of an anomalous Floquet topological system with ultracold atoms. Nat. Phys. 16(10), 1058–1063 (2020)
CrossRef Google scholar
[15]
Zhang, P.F., Shen, H.T., Zhai, H.: Machine learning topological invariants with neural networks. Phys. Rev. Lett. 120(6), 066401 (2018)
CrossRef Google scholar
[16]
Lang, T.C., Essin, A.M., Gurarie, V., Wessel, S.: Z2 topological invariants in two dimensions from quantum Monte Carlo. Phys Rev B Condens Matter Mater Phys. 87(20), 205101 (2013)
CrossRef Google scholar
[17]
Grusdt, F., Abanin, D., Demler, E.: Measuring Z2 topological invariants in optical lattices using interferometry. Phys. Rev. A 89(4), 043621 (2014)
CrossRef Google scholar
[18]
Sun, Z., Zhou, H., Wang, C., Kumar, S., Geng, D., Yue, S., Han, X., Haraguchi, Y., Shimada, K., Cheng, P., Chen, L., Shi, Y., Wu, K., Meng, S., Feng, B.: Observation of topological flat bands in the Kagome semiconductor Nb3Cl8. Nano Lett. 22(11), 4596–4602 (2022)
CrossRef Google scholar
[19]
Duan, S.S., You, J.Y., Gou, J., Chen, J., Huang, Y.L., Liu, M.Z., Sun, S., Wang, Y.H., Yu, X.J., Wang, L., Feng, Y.P., Sun, Y.Y., Wee, T.S., Chen, W.: Epitaxial growth of single-layer Kagome nanoflakes with topological band inversion. ACS Nano 16(12), 21079–21086 (2022)
CrossRef Google scholar
[20]
Xiong, L.L., Liu, Y.F., Zhang, Y., Zheng, Y.X., Jiang, X.Y.: Topological properties of a two-dimensional photonic square lattice without C4 and Mx(y) symmetries. ACS Photonics 9(7), 2448–2454 (2022)
CrossRef Google scholar
[21]
Chen, Y.F., Lan, Z.H., Zhu, J.: Second-order topological phases in C4V-symmetric photonic crystals beyond the two-dimensional Su-Schrieffer–Heeger model. Nanophotonics 11(7), 1345–1354 (2022)
CrossRef Google scholar
[22]
Zhang, W.X., Xie, X., Hao, H.M., Dang, J.C., Xiao, S., Shi, S.S., Ni, H.Q., Niu, Z.C., Wang, C., Jin, K.J., Zhang, X.D., Xu, X.L.: Low-threshold topological nanolasers based on the second-order corner state. Light Sci. Appl. 9(1), 109 (2020)
CrossRef Google scholar
[23]
Padavić, K., Hegde, S.S., DeGottardi, W., Vishveshwara, S.: Topological phases, edge modes, and the Hofstadter butterfly in coupled Su-Schrieffer-Heeger systems. Phys. Rev. B 98(2), 024205 (2018)
CrossRef Google scholar
[24]
Wang, Y.H., Liu, W.J., Ji, Z.R., Modi, G., Hwang, M., Agarwal, R.: Coherent interactions in one-dimensional topological photonic systems and their applications in all-optical logic operation. Nano Lett. 20(12), 8796–8802 (2020)
CrossRef Google scholar
[25]
Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)
CrossRef Google scholar
[26]
Machta, J.: Entropy, information, and computation. Am. J. Phys. 67(12), 1074–1077 (1999)
CrossRef Google scholar
[27]
Di Crescenzo, A., Longobardi, M.: On cumulative entropies. J. Stat. Plan. Inference 139(12), 4072–4087 (2009)
CrossRef Google scholar
[28]
Cui, T.J., Liu, S., Li, L.L.: Information entropy of coding metasurface. Light Sci. Appl. 5(11), e16172 (2016)
CrossRef Google scholar
[29]
Zhang, Y.Q., Ren, B.Q., Li, Y.D., Ye, F.W.: Topological states in the super-SSH model. Opt. Express 29(26), 42827–42836 (2021)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 The Author(s) 2024
AI Summary AI Mindmap
PDF(1747 KB)

Accesses

Citations

Detail

Sections
Recommended

/