Spin-controlled topological phase transition in non-Euclidean space

  • Zhuochen Du 1 ,
  • Jinze Gao 1 ,
  • Qiuchen Yan , 1 ,
  • Cuicui Lu , 2 ,
  • Xiaoyong Hu , 1,3,4,5 ,
  • Qihuang Gong 1,3,4,5
Expand
  • 1. State Key Laboratory for Mesoscopic Physics and Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-Optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China
  • 2. Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
  • 3. Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
  • 4. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 5. Hefei National Laboratory, Hefei 230088, China
qiuchenyan@pku.edu.cn
cuicuilu@bit.edu.cn
xiaoyonghu@pku.edu.cn

Received date: 04 Jan 2024

Accepted date: 27 Feb 2024

Published date: 15 Mar 2024

Copyright

2024 The Author(s) 2024

Abstract

Modulation of topological phase transition has been pursued by researchers in both condensed matter and optics research fields, and has been realized in Euclidean systems, such as topological photonic crystals, topological metamaterials, and coupled resonator arrays. However, the spin-controlled topological phase transition in non-Euclidean space has not yet been explored. Here, we propose a non-Euclidean configuration based on Möbius rings, and we demonstrate the spin-controlled transition between the topological edge state and the bulk state. The Möbius ring, which is designed to have an 8π period, has a square cross section at the twist beginning and the length/width evolves adiabatically along the loop, accompanied by conversion from transverse electric to transverse magnetic modes resulting from the spin-locked effect. The 8π period Möbius rings are used to construct Su–Schrieffer–Heeger configuration, and the configuration can support the topological edge states excited by circularly polarized light, and meanwhile a transition from the topological edge state to the bulk state can be realized by controlling circular polarization. In addition, the spin-controlled topological phase transition in non-Euclidean space is feasible for both Hermitian and non-Hermitian cases in 2D systems. This work provides a new degree of polarization to control topological photonic states based on the spin of Möbius rings and opens a way to tune the topological phase in non-Euclidean space.

Cite this article

Zhuochen Du , Jinze Gao , Qiuchen Yan , Cuicui Lu , Xiaoyong Hu , Qihuang Gong . Spin-controlled topological phase transition in non-Euclidean space[J]. Frontiers of Optoelectronics, 2024 , 17(1) : 7 . DOI: 10.1007/s12200-024-00110-w

1
Ozawa, T., Price, H.M., Amo, A., Goldman, N., Hafezi, M., Lu, L., Rechtsman, M.C., Schuster, D., Simon, J., Zilberberg, O., Carusotto, I.: Topological photonics. Rev. Mod. Phys. 91(1), 015006 (2019)

DOI

2
Khanikaev, A.B., Shvets, G.: Two-dimensional topological photonics. Nat. Photonics 11(12), 763–773 (2017)

DOI

3
Smirnova, D., Leykam, D., Chong, Y.D., Kivshar, Y.: Nonlinear topological photonics. Appl. Phys. Rev. 7(2), 021306 (2020)

DOI

4
Yan, Q.C., Hu, X.Y., Fu, Y.L., Lu, C.C., Fan, C.X., Liu, Q.H., Feng, X.L., Sun, Q., Gong, Q.H.: Quantum topological photonics. Adv. Opt. Mater. 9(15), 2001739 (2021)

DOI

5
Ota, Y., Takata, K., Ozawa, T., Amo, A., Jia, Z., Kante, B., Notomi, M., Arakawa, Y., Iwamoto, S.: Active topological photonics. Nanophotonics 9(3), 547–567 (2020)

DOI

6
Kim, M., Jacob, Z., Rho, J.: Recent advances in 2D, 3D and higher-order topological photonics. Light Sci. Appl. 9, 130 (2020)

DOI

7
Lustig, E., Segev, M.: Topological photonics in synthetic dimensions. Adv. Opt. Photonics 13(2), 426 (2021)

DOI

8
Song, Y.L., Monceaux, Y., Bittner, S., Chao, K., Reynoso de la Cruz, H.M., Lafargue, C., Decanini, D., Dietz, B., Zyss, J., Grigis, A., Checoury, X., Lebental, M.: Möbius strip microlasers: a testbed for non-Euclidean photonics. Phys. Rev. Lett. 127(20), 203901 (2021)

DOI

9
Garcia-Etxarri, A.: Optical polarization Möbius strips on all-dielectric optical scatterers. ACS Photonics 4(5), 1159–1164 (2017)

DOI

10
Herges, R.: Topology in chemistry: designing Möbius molecules. Chem. Rev. 106(12), 4820–4842 (2006)

DOI

11
Starostin, E.L., Van der Heijden, G.H.M.: The shape of a Möbius strip. Nat. Mater. 6(8), 563–567 (2007)

DOI

12
Flouris, K., Jimenez, M.M., Herrmann, H.J.: Curvature-induced quantum spin-Hall effect on a Möbius strip. Phys. Rev. B 105(23), 235122 (2022)

DOI

13
Xu, X.B., Shi, L., Guo, G.C., Dong, C.H., Zou, C.L.: “Möbius” microring resonator. Appl. Phys. Lett. 114(10), 101106 (2019)

DOI

14
Kreismann, J., Hentschel, M.: The optical Möbius strip cavity: tailoring geometric phases and far fields. Europhys. Lett. 121(2), 24001 (2018)

DOI

15
Hamilton, J.K., Hooper, I.R., Lawrence, C.R.: Absorption modes of Möbius strip resonators. Sci. Rep. 11(1), 1–7 (2021)

DOI

16
Zeng, Y., Wang, Z.Y., Wu, Y., Lu, L.S., Wang, Y.X., Shi, S.J., Qiu, Q.: Plasmonic microcavity formed by the Möbius strip. Chin. Phys. B 26(3), 037303 (2017)

DOI

17
Nie, Z.Z., Zuo, B., Wang, M., Huang, S., Chen, X.M., Liu, Z.Y., Yang, H.: Light-driven continuous rotating Möbius strip actuators. Nat. Commun. 12, 2334 (2021)

DOI

18
Bogaerts, W., De Heyn, P., Van Vaerenbergh, T., De Vos, K., Kumar Selvaraja, S., Claes, T., Dumon, P., Bienstman, P., Van Thourhout, D., Baets, R.: Silicon microring resonators. Laser Photonics Rev. 6(1), 47–73 (2012)

DOI

19
Parto, M., Wittek, S., Hodaei, H., Harari, G., Bandres, M.A., Ren, J., Rechtsman, M.C., Segev, M., Christodoulides, D.N., Khajavikhan, M.: Edge-mode lasing in 1D topological active arrays. Phys. Rev. Lett. 120(11), 113901 (2018)

DOI

20
Takata, K., Notomi, M.: Photonic topological insulating phase induced solely by gain and loss. Phys. Rev. Lett. 121(21), 213902 (2018)

DOI

21
Yan, Q.C., Cao, E., Sun, Q., Ao, Y.T., Hu, X.Y., Shi, X., Gong, Q.H., Misawa, H.: Near-field imaging and time-domain dynamics of photonic topological edge states in plasmonic nanochains. Nano Lett. 21(21), 9270–9278 (2021)

DOI

22
Ao, Y.T., Hu, X.Y., You, Y.L., Lu, C.C., Fu, Y.L., Wang, X.Y., Gong, Q.H.: Topological phase transition in the non-Hermitian coupled resonator array. Phys. Rev. Lett. 125(1), 013902 (2020)

DOI

Outlines

/